Suppr超能文献

基于生物信号和临床数据的急诊科急性呼吸衰竭人工智能早期预测

Artificial Intelligence-Based Early Prediction of Acute Respiratory Failure in the Emergency Department Using Biosignal and Clinical Data.

作者信息

Han Changho, Jung Yun Jung, Park Ji Eun, Chung Wou Young, Yoon Dukyong

机构信息

Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea.

Department of Pulmonology and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea.

出版信息

Yonsei Med J. 2025 Feb;66(2):121-130. doi: 10.3349/ymj.2024.0126.

Abstract

PURPOSE

Early identification of patients at risk for acute respiratory failure (ARF) could help clinicians devise preventive strategies. Analyzing biosignals with artificial intelligence (AI) can uncover hidden information and variability within time series. We aimed to develop and validate AI models to predict ARF within 72 h after emergency department admission, primarily using high-resolution biosignals collected within 4 h of arrival.

MATERIALS AND METHODS

Our AI model, built on convolutional recurrent neural networks, combines biosignal feature extraction and sequence modeling. The model was developed and internally validated with data from 5284 admissions [1085 (20.5%) positive for ARF], and externally validated using data from 144 admissions [7 (4.9%) positive for ARF] from another institution. We defined ARF as the application of advanced respiratory support devices.

RESULTS

Our AI model performed well in predicting ARF, achieving area under the receiver operating characteristic curve (AUROC) of 0.840 and 0.743 in internal and external validations, respectively. It outperformed the Modified Early Warning Score (MEWS) and XGBoost models built only with clinical variables. High predictive ability for mortality was observed, with AUROC up to 0.809. A 10% increase in AI prediction scores was associated with 1.44-fold and 1.42-fold increases in ARF risk and mortality risk, respectively, even after adjusting for MEWS and demographic variables.

CONCLUSION

Our AI model demonstrates high predictive accuracy and significant associations with clinical outcomes. Our AI model has the potential to promptly aid in triage decisions. Our study shows that using AI to analyze biosignals advances disease detection and prediction.

摘要

目的

早期识别急性呼吸衰竭(ARF)风险患者有助于临床医生制定预防策略。利用人工智能(AI)分析生物信号可揭示时间序列中的隐藏信息和变异性。我们旨在开发并验证AI模型,以预测急诊科入院后72小时内的ARF,主要使用到达后4小时内收集的高分辨率生物信号。

材料与方法

我们基于卷积循环神经网络构建的AI模型,结合了生物信号特征提取和序列建模。该模型使用来自5284例入院患者的数据(1085例[20.5%]ARF呈阳性)进行开发和内部验证,并使用来自另一机构的144例入院患者的数据(7例[4.9%]ARF呈阳性)进行外部验证。我们将ARF定义为应用高级呼吸支持设备。

结果

我们的AI模型在预测ARF方面表现良好,内部验证和外部验证的受试者操作特征曲线下面积(AUROC)分别为0.840和0.743。它优于仅基于临床变量构建的改良早期预警评分(MEWS)和XGBoost模型。观察到对死亡率有较高的预测能力,AUROC高达0.809。即使在调整MEWS和人口统计学变量后,AI预测评分增加10%分别与ARF风险和死亡风险增加1.44倍和1.42倍相关。

结论

我们的AI模型显示出高预测准确性以及与临床结局的显著关联。我们的AI模型有潜力迅速辅助分诊决策。我们的研究表明,使用AI分析生物信号可推进疾病检测和预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d083/11790410/96ec54d3b307/ymj-66-121-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验