Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
PLoS Genet. 2021 Jun 3;17(6):e1009607. doi: 10.1371/journal.pgen.1009607. eCollection 2021 Jun.
Early endosomes are the sorting hub on the endocytic pathway, wherein sorting nexins (SNXs) play important roles for formation of the distinct membranous microdomains with different sorting functions. Tubular endosomes mediate the recycling of clathrin-independent endocytic (CIE) cargoes back toward the plasma membrane. However, the molecular mechanism underlying the tubule formation is still poorly understood. Here we screened the effect on the ARF-6-associated CIE recycling endosomal tubules for all the SNX members in Caenorhabditis elegans (C. elegans). We identified SNX-3 as an essential factor for generation of the recycling tubules. The loss of SNX-3 abolishes the interconnected tubules in the intestine of C. elegans. Consequently, the surface and total protein levels of the recycling CIE protein hTAC are strongly decreased. Unexpectedly, depletion of the retromer components VPS-26/-29/-35 has no similar effect, implying that the retromer trimer is dispensable in this process. We determined that hTAC is captured by the ESCRT complex and transported into the lysosome for rapid degradation in snx-3 mutants. Interestingly, EEA-1 is increasingly recruited on early endosomes and localized to the hTAC-containing structures in snx-3 mutant intestines. We also showed that SNX3 and EEA1 compete with each other for binding to phosphatidylinositol-3-phosphate enriching early endosomes in Hela cells. Our data demonstrate for the first time that PX domain-only C. elegans SNX-3 organizes the tubular endosomes for efficient recycling and retrieves the CIE cargo away from the maturing sorting endosomes by competing with EEA-1 for binding to the early endosomes. However, our results call into question how SNX-3 couples the cargo capture and membrane remodeling in the absence of the retromer trimer complex.
早期内涵体是内吞作用途径中的分拣中心,在此过程中分选连接蛋白(SNXs)对于形成具有不同分拣功能的独特膜微区发挥着重要作用。管状内涵体介导网格蛋白非依赖型内吞(CIE)货物向质膜的再循环。然而,管状结构形成的分子机制仍知之甚少。在这里,我们筛选了所有在秀丽隐杆线虫(C. elegans)中与 ARF-6 相关的 CIE 再循环内涵体管状结构相关的 SNX 成员的作用。我们确定 SNX-3 是生成再循环管状结构的必需因素。SNX-3 的缺失会导致线虫肠道中相互连接的管状结构消失。因此,再循环 CIE 蛋白 hTAC 的表面和总蛋白水平强烈降低。出乎意料的是,耗竭再循环成分 VPS-26/-29/-35 没有类似的效果,这意味着再循环三聚体在此过程中是可有可无的。我们确定 hTAC 被 ESCRT 复合物捕获,并被转运到溶酶体中进行快速降解。有趣的是,在 snx-3 突变体中,早期内涵体上 EEA-1 的募集增加,并定位于含 hTAC 的结构中。我们还表明,在 Hela 细胞中,SNX3 和 EEA1 相互竞争与富含磷脂酰肌醇-3-磷酸的早期内涵体结合。我们的数据首次表明,PX 结构域仅存在于秀丽隐杆线虫的 SNX-3 中,它通过与 EEA-1 竞争结合早期内涵体,组织管状内涵体进行有效的再循环,并将 CIE 货物从成熟的分拣内涵体中回收。然而,我们的结果质疑了在没有再循环三聚体复合物的情况下,SNX-3 如何将货物捕获和膜重塑联系起来。