Gu Yuliang, Zhang Xiangzhou, Xu Anqi, Chen Weiqi, Liu Kang, Wu Lijuan, Mo Shenglong, Hu Yong, Liu Mei, Luo Qichao
Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230022, China.
Big Data Decision Institute, Jinan University, Guangzhou, Guangdong 510632, China.
iScience. 2022 Dec 28;26(1):105892. doi: 10.1016/j.isci.2022.105892. eCollection 2023 Jan 20.
Accurate prediction of protein-ligand binding affinity is crucial in structure-based drug design but remains some challenges even with recent advances in deep learning: (1) Existing methods neglect the edge information in protein and ligand structure data; (2) current attention mechanisms struggle to capture true binding interactions in the small dataset. Herein, we proposed SEGSA_DTA, a SuperEdge Graph convolution-based and Supervised Attention-based Drug-Target Affinity prediction method, where the super edge graph convolution can comprehensively utilize node and edge information and the multi-supervised attention module can efficiently learn the attention distribution consistent with real protein-ligand interactions. Results on the multiple datasets show that SEGSA_DTA outperforms current state-of-the-art methods. We also applied SEGSA_DTA in repurposing FDA-approved drugs to identify potential coronavirus disease 2019 (COVID-19) treatments. Besides, by using SHapley Additive exPlanations (SHAP), we found that SEGSA_DTA is interpretable and further provides a new quantitative analytical solution for structure-based lead optimization.
准确预测蛋白质-配体结合亲和力在基于结构的药物设计中至关重要,但即便深度学习取得了最新进展,仍存在一些挑战:(1)现有方法忽略了蛋白质和配体结构数据中的边缘信息;(2)当前的注意力机制在小数据集中难以捕捉真正的结合相互作用。在此,我们提出了SEGSA_DTA,一种基于超边图卷积和监督注意力的药物-靶点亲和力预测方法,其中超边图卷积可全面利用节点和边缘信息,多监督注意力模块能够有效学习与真实蛋白质-配体相互作用一致的注意力分布。多个数据集上的结果表明,SEGSA_DTA优于当前的最先进方法。我们还将SEGSA_DTA应用于重新利用FDA批准的药物,以识别潜在的2019冠状病毒病(COVID-19)治疗方法。此外,通过使用SHapley加性解释(SHAP),我们发现SEGSA_DTA具有可解释性,并进一步为基于结构的先导化合物优化提供了一种新的定量分析解决方案。