Suppr超能文献

美国各郡县中 COVID-19 影响因素的集成机器学习。

Ensemble machine learning of factors influencing COVID-19 across US counties.

机构信息

Division of Environmental Health Sciences, UC Berkeley, Berkeley, CA, 94720, USA.

Department of Environmental Science, Policy, and Management, UC Berkeley, Berkeley, CA, 94720, USA.

出版信息

Sci Rep. 2021 Jun 3;11(1):11777. doi: 10.1038/s41598-021-90827-x.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the causal agent for COVID-19, is a communicable disease spread through close contact. It is known to disproportionately impact certain communities due to both biological susceptibility and inequitable exposure. In this study, we investigate the most important health, social, and environmental factors impacting the early phases (before July, 2020) of per capita COVID-19 transmission and per capita all-cause mortality in US counties. We aggregate county-level physical and mental health, environmental pollution, access to health care, demographic characteristics, vulnerable population scores, and other epidemiological data to create a large feature set to analyze per capita COVID-19 outcomes. Because of the high-dimensionality, multicollinearity, and unknown interactions of the data, we use ensemble machine learning and marginal prediction methods to identify the most salient factors associated with several COVID-19 outbreak measure. Our variable importance results show that measures of ethnicity, public transportation and preventable diseases are the strongest predictors for both per capita COVID-19 incidence and mortality. Specifically, the CDC measures for minority populations, CDC measures for limited English, and proportion of Black- and/or African-American individuals in a county were the most important features for per capita COVID-19 cases within a month after the pandemic started in a county and also at the latest date examined. For per capita all-cause mortality at day 100 and total to date, we find that public transportation use and proportion of Black- and/or African-American individuals in a county are the strongest predictors. The methods predict that, keeping all other factors fixed, a 10% increase in public transportation use, all other factors remaining fixed at the observed values, is associated with increases mortality at day 100 of 2012 individuals (95% CI [1972, 2356]) and likewise a 10% increase in the proportion of Black- and/or African-American individuals in a county is associated with increases total deaths at end of study of 2067 (95% CI [1189, 2654]). Using data until the end of study, the same metric suggests ethnicity has double the association as the next most important factors, which are location, disease prevalence, and transit factors. Our findings shed light on societal patterns that have been reported and experienced in the U.S. by using robust methods to understand the features most responsible for transmission and sectors of society most vulnerable to infection and mortality. In particular, our results provide evidence of the disproportionate impact of the COVID-19 pandemic on minority populations. Our results suggest that mitigation measures, including how vaccines are distributed, could have the greatest impact if they are given with priority to the highest risk communities.

摘要

严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)是导致 COVID-19 的病原体,是一种通过密切接触传播的传染病。由于生物易感性和不平等的暴露,它已知会对某些社区造成不成比例的影响。在这项研究中,我们调查了影响美国县人均 COVID-19 传播和人均全因死亡率的最重要的健康、社会和环境因素。我们汇总了县一级的身心健康、环境污染、获得医疗保健的机会、人口特征、弱势群体评分和其他流行病学数据,以创建一个大型特征集来分析人均 COVID-19 结果。由于数据的高维性、多重共线性和未知的相互作用,我们使用集成机器学习和边际预测方法来识别与几个 COVID-19 爆发措施相关的最显著因素。我们的变量重要性结果表明,族裔、公共交通和可预防疾病的措施是人均 COVID-19 发病率和死亡率的最强预测因素。具体来说,疾病预防控制中心针对少数族裔的措施、疾病预防控制中心针对英语有限的措施以及县内黑人和/或非裔美国人的比例是在一个县开始大流行后的一个月内和我们研究的最新日期内,每县人均 COVID-19 病例的最重要特征。对于第 100 天和总到目前为止的人均全因死亡率,我们发现公共交通使用和县内黑人和/或非裔美国人的比例是最强的预测因素。该方法预测,在固定所有其他因素的情况下,公共交通使用增加 10%,其他所有因素保持观察值不变,与第 100 天的死亡率增加 2012 人(95%CI[1972,2356])有关,同样,县内黑人和/或非裔美国人的比例增加 10%与研究结束时总死亡人数增加 2067 人(95%CI[1189,2654])有关。使用研究结束时的数据,同样的指标表明,族裔因素的关联是第二重要因素的两倍,第二重要因素是位置、疾病流行率和运输因素。我们的发现通过使用稳健的方法来理解对传播最负责任的特征和最容易感染和死亡的社会部门,揭示了在美国已经报告和经历的社会模式。特别是,我们的结果提供了证据表明 COVID-19 大流行对少数族裔人口的不成比例影响。我们的结果表明,如果优先向风险最高的社区分发疫苗,缓解措施(包括如何分发疫苗)可能会产生最大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef9/8175420/1195fa727b7f/41598_2021_90827_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验