Suppr超能文献

支持向量回归算法建模,利用母犬体重和胎儿双顶径预测中小型犬的分娩日期。

Support vector regression algorithm modeling to predict the parturition date of small - to medium-sized dogs using maternal weight and fetal biparietal diameter.

作者信息

Sananmuang Thanida, Mankong Kanchanarat, Ponglowhapan Suppawiwat, Chokeshaiusaha Kaj

机构信息

Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand.

Smile Dog Small Animal Hospital, Chonburi, Thailand.

出版信息

Vet World. 2021 Apr;14(4):829-834. doi: 10.14202/vetworld.2021.829-834. Epub 2021 Apr 2.

Abstract

BACKGROUND AND AIM

Fetal biparietal diameter (BPD) is a feasible parameter to predict canine parturition date due to its inverted correlation with days before parturition (DBP). Although such a relationship is generally described using a simple linear regression (SLR) model, the imprecision of this model in predicting the parturition date in small- to medium-sized dogs is a common problem among veterinarian practitioners. Support vector regression (SVR) is a useful machine learning model for prediction. This study aimed to compare the accuracy of SVR with that of SLR in predicting DBP.

MATERIALS AND METHODS

After measuring 101 BPDs in 35 small- to medium-sized pregnant bitches, we fitted the data to the routine SLR model and the SVR model using three different kernel functions, radial basis function SVR, linear SVR, and polynomial SVR. The predicted DBP acquired from each model was further utilized for calculating the coefficient of determination (R2), mean absolute error, and mean squared error scores for determining the prediction accuracy.

RESULTS

All SVR models were more accurate than the SLR model at predicting DBP. The linear and polynomial SVRs were identified as the two most accurate models (p<0.01).

CONCLUSION

With available machine learning software, linear and polynomial SVRs can be applied to predicting DBP in small- to medium-sized pregnant bitches.

摘要

背景与目的

由于胎儿双顶径(BPD)与分娩前天数(DBP)呈负相关,因此它是预测犬类分娩日期的一个可行参数。尽管这种关系通常使用简单线性回归(SLR)模型来描述,但该模型在预测中小型犬的分娩日期时不够精确,这在兽医从业者中是一个常见问题。支持向量回归(SVR)是一种用于预测的有用机器学习模型。本研究旨在比较SVR和SLR在预测DBP方面的准确性。

材料与方法

在测量了35只中小型怀孕母犬的101个BPD后,我们使用三种不同的核函数,即径向基函数SVR、线性SVR和多项式SVR,将数据拟合到常规SLR模型和SVR模型中。从每个模型获得的预测DBP进一步用于计算决定系数(R2)、平均绝对误差和均方误差分数,以确定预测准确性。

结果

在预测DBP方面,所有SVR模型都比SLR模型更准确。线性和多项式SVR被确定为两个最准确的模型(p<0.01)。

结论

借助现有的机器学习软件,线性和多项式SVR可应用于预测中小型怀孕母犬的DBP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f2/8167531/1de672b49310/Vetworld-14-829-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验