Suppr超能文献

用于预测猫分娩日期的多层感知器和支持向量回归模型。

Multilayer perceptron and support vector regression models for feline parturition date prediction.

作者信息

Sananmuang Thanida, Mankong Kanchanarat, Chokeshaiusaha Kaj

机构信息

Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, Thailand.

Smile Dog Small Animal Hospital, Chonburi, Thailand.

出版信息

Heliyon. 2024 Mar 15;10(6):e27992. doi: 10.1016/j.heliyon.2024.e27992. eCollection 2024 Mar 30.

Abstract

A crucial challenge in feline obstetric care is the accurate prediction of the parturition date during late pregnancy. The classic simple linear regression (SLR) model, which employed the fetal biparietal diameter (BPD) as the single input feature, was frequently applied for such prediction with limited accuracy. Since Multilayer Perceptron (MLP) and Support Vector Regression (SVR) are now two of the most potent scientific regression models, this study, for the first time, introduced such models as the new promising tools for feline parturition date prediction. The following features were candidate inputs for our models: biparietal diameter (BPD), litter size, and maternal weight. We observed and compared the performance results for each model. As the best-performed model, MLP delivered the highest coefficient score (0.972 ± 0.006), lowest mean absolute error score (1.110 ± 0.060), and lowest mean squared error score (1.540 ± 0.141), respectively. For the first time in this study, BPD, litter size, and maternal weight were considered the essential features for the innovative MLP and SVR modeling. With the optimized model parameters and the described analytical platform, further verification of these advanced models in feline obstetric practices is feasible.

摘要

猫产科护理中的一个关键挑战是在妊娠晚期准确预测分娩日期。经典的简单线性回归(SLR)模型将胎儿双顶径(BPD)作为单一输入特征,经常用于此类预测,但准确性有限。由于多层感知器(MLP)和支持向量回归(SVR)现在是两种最有效的科学回归模型,本研究首次引入这些模型作为预测猫分娩日期的新的有前景的工具。以下特征是我们模型的候选输入:双顶径(BPD)、窝产仔数和母体体重。我们观察并比较了每个模型的性能结果。作为表现最佳的模型,MLP分别给出了最高的系数得分(0.972±0.006)、最低的平均绝对误差得分(1.110±0.060)和最低的均方误差得分(1.540±0.141)。在本研究中,首次将BPD、窝产仔数和母体体重视为创新的MLP和SVR建模的基本特征。利用优化的模型参数和所描述的分析平台,在猫产科实践中进一步验证这些先进模型是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/370e/10963322/349e0082f119/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验