Chen Liang, Zhao Tiancong, Zhao Mengyao, Wang Wenxing, Sun Caixia, Liu Lu, Li Qin, Zhang Fan, Zhao Dongyuan, Li Xiaomin
Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University Shanghai 200433 P. R. China
Queensland Micro- and Nanotechnology Centre, School of Engineering & Built Environment, Griffith University Nathan QLD 4111 Australia.
Chem Sci. 2020 Feb 3;11(10):2819-2827. doi: 10.1039/c9sc06260b.
A series of biological barriers in a nanoparticle-formulated drug delivery process inevitably result in the current low delivery efficiency, limited tumor penetration and insufficient cellular internalization of drugs. These multiple biological barriers are intimately related to the physicochemical properties of nanoparticles, especially the contradictory demand on size and surface charge for long blood circulation (larger and negative) and deep tumor penetration (smaller) as well as efficient cellular internalization (positive). Herein, we report tumor microenvironment triggered size and charge dual-transformable nanoassemblies. The nanoassembly is realized by immobilizing positive up/downconverting luminescent nanoparticles (U/DCNPs) onto large mesoporous silica nanoparticles (MSNs) acid-labile bonds to form core@satellite structured MSN@U/DCNPs nanoassemblies, and subsequent capping of charge reversible polymers. At physiological pH, the integrated nanoassemblies with a larger size (∼180 nm) and negative charge can effectively achieve a prolonged blood circulation and high tumor accumulation. While under an acidic tumor microenvironment, the charge reversal of outer polymers and cleavage of linkers between MSNs and U/DCNPs can induce disintegration of the nanoassemblies into isolated MSNs and smaller U/DCNPs, both with a positively charged surface, which thereby potentiate the tumor penetration and cell uptake of dissociated nanoparticles. Combined with the independent near-infrared (NIR)-to-visible and NIR-to-NIR luminescence of U/DCNPs and high surface area of MSNs, the nanoassemblies can implement NIR bioimaging guided chemo- and photodynamic combined therapy with remarkable antitumor efficiency because of the high accumulation and deep tumor penetration induced by the dual transformability of the nanoassemblies.
纳米颗粒制剂药物递送过程中的一系列生物屏障不可避免地导致了当前较低的递送效率、有限的肿瘤穿透能力以及药物细胞内化不足。这些多重生物屏障与纳米颗粒的物理化学性质密切相关,尤其是对于长循环(更大尺寸且带负电荷)、深部肿瘤穿透(更小尺寸)以及高效细胞内化(带正电荷)在尺寸和表面电荷方面相互矛盾的要求。在此,我们报道了肿瘤微环境触发的尺寸和电荷双可转换纳米组装体。该纳米组装体通过将带正电的上/下转换发光纳米颗粒(U/DCNPs)通过酸不稳定键固定在大孔二氧化硅纳米颗粒(MSNs)上以形成核@卫星结构的MSN@U/DCNPs纳米组装体,随后用电荷可逆聚合物进行封端来实现。在生理pH值下,具有较大尺寸(约180 nm)和负电荷的整合纳米组装体能够有效地实现血液循环延长和肿瘤高蓄积。而在酸性肿瘤微环境下,外层聚合物的电荷反转以及MSNs与U/DCNPs之间连接体的裂解可诱导纳米组装体解体为孤立的MSNs和更小的U/DCNPs,二者表面均带正电荷,从而增强了解离纳米颗粒的肿瘤穿透能力和细胞摄取。结合U/DCNPs独立的近红外(NIR)到可见光以及NIR到NIR发光特性和MSNs的高比表面积,由于纳米组装体的双可转换性诱导的高蓄积和深部肿瘤穿透能力,该纳米组装体能够实现NIR生物成像引导的化学和光动力联合治疗,并具有显著的抗肿瘤效率。
Colloids Surf B Biointerfaces. 2019-5-31
Angew Chem Int Ed Engl. 2018-2-6
Mater Today Bio. 2025-2-15
Pharmaceuticals (Basel). 2024-6-7
Cancers (Basel). 2023-10-16
Chem Sci. 2022-10-19
Vaccines (Basel). 2022-11-17
Nat Nanotechnol. 2019-7-1
Biomaterials. 2019-6-23