文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于增强药物递送和肿瘤渗透的尺寸与电荷双可转换介孔纳米组装体

Size and charge dual-transformable mesoporous nanoassemblies for enhanced drug delivery and tumor penetration.

作者信息

Chen Liang, Zhao Tiancong, Zhao Mengyao, Wang Wenxing, Sun Caixia, Liu Lu, Li Qin, Zhang Fan, Zhao Dongyuan, Li Xiaomin

机构信息

Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University Shanghai 200433 P. R. China

Queensland Micro- and Nanotechnology Centre, School of Engineering & Built Environment, Griffith University Nathan QLD 4111 Australia.

出版信息

Chem Sci. 2020 Feb 3;11(10):2819-2827. doi: 10.1039/c9sc06260b.


DOI:10.1039/c9sc06260b
PMID:34084342
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8157500/
Abstract

A series of biological barriers in a nanoparticle-formulated drug delivery process inevitably result in the current low delivery efficiency, limited tumor penetration and insufficient cellular internalization of drugs. These multiple biological barriers are intimately related to the physicochemical properties of nanoparticles, especially the contradictory demand on size and surface charge for long blood circulation (larger and negative) and deep tumor penetration (smaller) as well as efficient cellular internalization (positive). Herein, we report tumor microenvironment triggered size and charge dual-transformable nanoassemblies. The nanoassembly is realized by immobilizing positive up/downconverting luminescent nanoparticles (U/DCNPs) onto large mesoporous silica nanoparticles (MSNs) acid-labile bonds to form core@satellite structured MSN@U/DCNPs nanoassemblies, and subsequent capping of charge reversible polymers. At physiological pH, the integrated nanoassemblies with a larger size (∼180 nm) and negative charge can effectively achieve a prolonged blood circulation and high tumor accumulation. While under an acidic tumor microenvironment, the charge reversal of outer polymers and cleavage of linkers between MSNs and U/DCNPs can induce disintegration of the nanoassemblies into isolated MSNs and smaller U/DCNPs, both with a positively charged surface, which thereby potentiate the tumor penetration and cell uptake of dissociated nanoparticles. Combined with the independent near-infrared (NIR)-to-visible and NIR-to-NIR luminescence of U/DCNPs and high surface area of MSNs, the nanoassemblies can implement NIR bioimaging guided chemo- and photodynamic combined therapy with remarkable antitumor efficiency because of the high accumulation and deep tumor penetration induced by the dual transformability of the nanoassemblies.

摘要

纳米颗粒制剂药物递送过程中的一系列生物屏障不可避免地导致了当前较低的递送效率、有限的肿瘤穿透能力以及药物细胞内化不足。这些多重生物屏障与纳米颗粒的物理化学性质密切相关,尤其是对于长循环(更大尺寸且带负电荷)、深部肿瘤穿透(更小尺寸)以及高效细胞内化(带正电荷)在尺寸和表面电荷方面相互矛盾的要求。在此,我们报道了肿瘤微环境触发的尺寸和电荷双可转换纳米组装体。该纳米组装体通过将带正电的上/下转换发光纳米颗粒(U/DCNPs)通过酸不稳定键固定在大孔二氧化硅纳米颗粒(MSNs)上以形成核@卫星结构的MSN@U/DCNPs纳米组装体,随后用电荷可逆聚合物进行封端来实现。在生理pH值下,具有较大尺寸(约180 nm)和负电荷的整合纳米组装体能够有效地实现血液循环延长和肿瘤高蓄积。而在酸性肿瘤微环境下,外层聚合物的电荷反转以及MSNs与U/DCNPs之间连接体的裂解可诱导纳米组装体解体为孤立的MSNs和更小的U/DCNPs,二者表面均带正电荷,从而增强了解离纳米颗粒的肿瘤穿透能力和细胞摄取。结合U/DCNPs独立的近红外(NIR)到可见光以及NIR到NIR发光特性和MSNs的高比表面积,由于纳米组装体的双可转换性诱导的高蓄积和深部肿瘤穿透能力,该纳米组装体能够实现NIR生物成像引导的化学和光动力联合治疗,并具有显著的抗肿瘤效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/ff367c188390/c9sc06260b-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/3b1ed5b0890a/c9sc06260b-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/a19573be7b7b/c9sc06260b-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/e6d945612296/c9sc06260b-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/5a6913edee3f/c9sc06260b-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/061ceaeb7ae2/c9sc06260b-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/ff367c188390/c9sc06260b-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/3b1ed5b0890a/c9sc06260b-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/a19573be7b7b/c9sc06260b-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/e6d945612296/c9sc06260b-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/5a6913edee3f/c9sc06260b-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/061ceaeb7ae2/c9sc06260b-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ab/8157500/ff367c188390/c9sc06260b-f5.jpg

相似文献

[1]
Size and charge dual-transformable mesoporous nanoassemblies for enhanced drug delivery and tumor penetration.

Chem Sci. 2020-2-3

[2]
Size-Transformable Bicomponent Peptide Nanoparticles for Deep Tumor Penetration and Photo-Chemo Combined Antitumor Therapy.

Small. 2022-2

[3]
A light-driven dual-nanotransformer with deep tumor penetration for efficient chemo-immunotherapy.

Theranostics. 2022

[4]
Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer.

Acta Pharm Sin B. 2022-8

[5]
Zwitterionic mesoporous nanoparticles with a bioresponsive gatekeeper for cancer therapy.

Acta Biomater. 2016-8

[6]
Sequentially Responsive Shell-Stacked Nanoparticles for Deep Penetration into Solid Tumors.

Adv Mater. 2017-6-20

[7]
Size-Transformable Hyaluronan Stacked Self-Assembling Peptide Nanoparticles for Improved Transcellular Tumor Penetration and Photo-Chemo Combination Therapy.

ACS Nano. 2020-2-7

[8]
Tumor Microenvironment Responsive Shape-Reversal Self-Targeting Virus-Inspired Nanodrug for Imaging-Guided Near-Infrared-II Photothermal Chemotherapy.

ACS Nano. 2019-10-29

[9]
Poly(amino acid)/ZnO/mesoporous silica nanoparticle based complex drug delivery system with a charge-reversal property for cancer therapy.

Colloids Surf B Biointerfaces. 2019-5-31

[10]
Near-Infrared Triggered Decomposition of Nanocapsules with High Tumor Accumulation and Stimuli Responsive Fast Elimination.

Angew Chem Int Ed Engl. 2018-2-6

引用本文的文献

[1]
Advances in targeted therapy for tumor with nanocarriers: A review.

Mater Today Bio. 2025-2-15

[2]
LDH Isoenzyme and GAA-BSA Nanoparticles: A Novel Therapy Approach for Proneural Subtype Glioblastoma Multiforme.

J Cancer. 2025-1-6

[3]
Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy.

Acta Pharm Sin B. 2024-8

[4]
Photobleaching-mediated charge-convertible cyclodextrin nanoparticles achieve deep tumour penetration for rectal cancer theranostics.

Nat Nanotechnol. 2024-11

[5]
Characterization and Comparison of Contrast Imaging Properties of Naturally Isolated and Heterologously Expressed Gas Vesicles.

Pharmaceuticals (Basel). 2024-6-7

[6]
Niosomal Delivery of Celecoxib and Metformin for Targeted Breast Cancer Treatment.

Cancers (Basel). 2023-10-16

[7]
Dual targeting nanoparticles for epilepsy therapy.

Chem Sci. 2022-10-19

[8]
Nanoparticle-Based Delivery Systems for Vaccines.

Vaccines (Basel). 2022-11-17

[9]
Upconverting nanoparticle-containing erythrocyte-sized hemoglobin microgels that generate heat, oxygen and reactive oxygen species for suppressing hypoxic tumors.

Bioact Mater. 2022-9-28

[10]
Recent Advances in Nanoparticles-Based Platforms Targeting the PD-1/PD-L1 Pathway for Cancer Treatment.

Pharmaceutics. 2022-7-29

本文引用的文献

[1]
Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics.

Nat Commun. 2019-9-27

[2]
Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy.

Nat Nanotechnol. 2019-7-1

[3]
Charge-convertible polymers for improved tumor targeting and enhanced therapy.

Biomaterials. 2019-6-23

[4]
A Hypoxia-Responsive Albumin-Based Nanosystem for Deep Tumor Penetration and Excellent Therapeutic Efficacy.

Adv Mater. 2019-5-8

[5]
A pH/ROS Cascade-Responsive Charge-Reversal Nanosystem with Self-Amplified Drug Release for Synergistic Oxidation-Chemotherapy.

Adv Sci (Weinh). 2018-12-18

[6]
Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake.

ACS Nano. 2019-1-29

[7]
Supramolecularly Engineered NIR-II and Upconversion Nanoparticles In Vivo Assembly and Disassembly to Improve Bioimaging.

Adv Mater. 2018-11-4

[8]
Large-Pore Mesoporous-Silica-Coated Upconversion Nanoparticles as Multifunctional Immunoadjuvants with Ultrahigh Photosensitizer and Antigen Loading Efficiency for Improved Cancer Photodynamic Immunotherapy.

Adv Mater. 2018-11-2

[9]
Tumor Microenvironment-Responsive Ultrasmall Nanodrug Generators with Enhanced Tumor Delivery and Penetration.

J Am Chem Soc. 2018-10-25

[10]
Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment.

Nat Commun. 2018-9-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索