Xu Fang, Chen Wei, Walenta Constantin A, O'Connor Christopher R, Friend Cynthia M
Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
Department of Physics, Harvard University Cambridge Massachusetts 02138 USA.
Chem Sci. 2020 Jan 24;11(9):2448-2454. doi: 10.1039/c9sc06149e.
Despite a wide application in heterogeneous catalysis, the surface termination of FeO(111) remains controversial. Herein, a surface with both Lewis acid and base sites is created through formation of an FeO(111) film on α-FeO(0001). The dual functionality is generated from a locally nonuniform surface layer of O adatoms and Fe sites. This reactive layer is reproducibly formed even in oxygen-free environments because of the high mobility of ions in the underlying α-FeO(0001). The atomic structure of the FeO(111) surface was identified by scanning tunneling microscopy (STM) and density functional theory (DFT) using the registry of the overlayers with the surface and the distinct electronic structure of oxygen adatom (O) and uncovered lattice Fe. The surface is dominated by the interface of O and Fe, a Lewis acid-base pair, which favors methanol dissociation at room temperature to form methoxy. Methoxy is further oxidized to yield formaldehyde at 700 K in temperature programmed reaction spectra, corresponding to an approximate activation barrier of 179 kJ mol. The surface termination of FeO(111) is fully recovered by rapid heating to 720 K in vacuum, demonstrating the high mobility of ions in this material. The work establishes a clear fundamental understanding of a unique magnetite surface and provides insights into the origin of selective oxidation of alcohols on magnetite-terminated catalysts.
尽管FeO(111)在多相催化中有着广泛应用,但其表面终止情况仍存在争议。在此,通过在α-FeO(0001)上形成FeO(111)薄膜,制备出了一种同时具有路易斯酸和碱位点的表面。这种双重功能源自O吸附原子和Fe位点的局部非均匀表面层。由于底层α-FeO(0001)中离子的高迁移率,即使在无氧环境中也能可重复地形成这种反应层。利用覆盖层与表面的配准以及氧吸附原子(O)和未覆盖的晶格Fe的独特电子结构,通过扫描隧道显微镜(STM)和密度泛函理论(DFT)确定了FeO(111)表面的原子结构。该表面以O和Fe的界面为主,这是一对路易斯酸碱对,有利于甲醇在室温下解离形成甲氧基。在程序升温反应谱中,甲氧基在700 K进一步氧化生成甲醛,对应的近似活化能垒为179 kJ/mol。通过在真空中快速加热到720 K,FeO(111)的表面终止得以完全恢复,这表明该材料中离子具有高迁移率。这项工作对独特的磁铁矿表面建立了清晰的基本认识,并为磁铁矿终止催化剂上醇类选择性氧化的起源提供了见解。