Suppr超能文献

表面电子态促进了在金属纳米界面处协同的电子和质子转移,从而实现了-NO 到-NH 的催化氢化物还原。

Surface electronic states mediate concerted electron and proton transfer at metal nanoscale interfaces for catalytic hydride reduction of -NO to -NH.

机构信息

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.

出版信息

Phys Chem Chem Phys. 2021 Jun 16;23(23):12950-12957. doi: 10.1039/d1cp01792f.

Abstract

Concerted electron and proton transfer is a key step for the reversible conversion of molecular hydrogen in both heterogeneous nanocatalysis and metalloenzyme catalysis. However, its activation mechanism involving electron and proton transfer kinetics remains elusive. With the most widely used catalytic hydride reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) as a model reaction, we evaluate the catalytic activity of noble metal nanoparticles (NPs) trapped in porous silica in aqueous NaBH4 solution. By virtue of a novel combination of catalyst design, reaction kinetics, isotope labeling, and multiple spectroscopic techniques, the real catalytic site for the conversion of -NO2 to -NH2 is identified to be the water-hydroxyl transition metal complex, which could further react with NaBH4 to form a new triangular configuration metal complex of H3B-water-hydroxyl with dynamic features. It yields an ensemble of surface electronic states (SESs) though space overlapping of p orbitals of one B and several O atoms (including the O atoms of 4-NP), which could act as an alternative channel for concerted electron and proton transfer. This work highlights the critical role of the conceptual SESs model in heterogeneous catalysis to tune the chemical reactivity and also sheds light on the intricate working of the [FeFe]-hydrogenases.

摘要

协同电子和质子转移是均相纳米催化和金属酶催化中分子氢可逆转化的关键步骤。然而,涉及电子和质子转移动力学的激活机制仍然难以捉摸。我们以最广泛使用的催化氢化物还原 4-硝基苯酚(4-NP)为 4-氨基酚(4-AP)的模型反应,评估了多孔二氧化硅中捕获的贵金属纳米颗粒(NPs)在水合硼氢化钠溶液中的催化活性。通过巧妙地结合催化剂设计、反应动力学、同位素标记和多种光谱技术,确定了 -NO2 到 -NH2 转化的真实催化位点是水-羟基过渡金属配合物,它可以进一步与硼氢化钠反应,形成具有动态特征的新型三角配置的 H3B-水-羟基金属配合物。它通过一个 B 和几个 O 原子(包括 4-NP 的 O 原子)的 p 轨道的空间重叠产生了一系列表面电子态(SESs),这些 SESs 可以作为协同电子和质子转移的替代通道。这项工作突出了概念性 SESs 模型在异相催化中调节化学反应性的关键作用,也揭示了 [FeFe]-氢化酶的复杂工作原理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验