Suppr超能文献

头皮上放大的游走波。

Magnifying Traveling Waves on the Scalp.

机构信息

Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.

Department of Psychiatry, New York University School of Medicine, New York, NY, USA.

出版信息

Brain Topogr. 2022 Jan;35(1):162-168. doi: 10.1007/s10548-021-00853-1. Epub 2021 Jun 4.

Abstract

Traveling waves appear in various signals that measure neuronal activity. Some signals measured in animals have singles-cell resolution and directly point to neuronal activity. In those cases, activation of distributed neurons forms a wave front, and the front propagates across the cortical surface. Other signals are variants of neuroelectric potentials, i.e. electroencephalography, electrocorticography and field potentials. Instead of having fine spatial resolution, these signals reflect the activity of neuronal populations via volume conduction (VC). Sources of traveling waves in neuroelectric potentials have not been well addressed so far. As animal studies show propagating activation of neurons that spread in measured areas, it is often considered that neuronal activations during scalp waves have similar trajectories of activation, spreading like scalp waves. However, traveling waves on the scalp differ from those found directly on the cortical surface in several dimensions: traveling velocity, traveling distance and areal size occupied by single polarity. We describe that the simplest sources can produce scalp waves with perceived spatial dimensions which are actually a magnification of neuronal activity emanating from local sources due to VC. This viewpoint is not a rigorous proof of our magnification concept. However, we suggest the possibility that the actual dimensions of neuronal activity producing traveling waves is not as large as the dimension of the traveling waves.

摘要

在测量神经元活动的各种信号中都会出现行波。一些在动物身上测量到的信号具有单细胞分辨率,并且直接指向神经元活动。在这些情况下,分布式神经元的激活形成波前,波前在皮质表面传播。其他信号是神经电潜力的变体,即脑电图、皮质电图和场电位。这些信号不是通过体积传导(VC)来反映神经元群体的活动,而是具有精细的空间分辨率。到目前为止,神经电潜力中行波的源还没有得到很好的解决。由于动物研究表明神经元的激活在测量区域中传播,因此人们通常认为头皮波期间的神经元激活具有相似的激活轨迹,像头皮波一样传播。然而,头皮上的行波与直接在皮质表面上发现的行波在几个方面有所不同:传播速度、传播距离和单个极性占据的面积。我们描述了最简单的源可以产生具有感知空间维度的头皮波,这些维度实际上是由于 VC 而从局部源发出的神经元活动的放大。这种观点不是我们放大概念的严格证明。然而,我们提出了这样一种可能性,即产生行波的神经元活动的实际维度并不像行波的维度那么大。

相似文献

1
Magnifying Traveling Waves on the Scalp.
Brain Topogr. 2022 Jan;35(1):162-168. doi: 10.1007/s10548-021-00853-1. Epub 2021 Jun 4.
2
5
Theta and Alpha Oscillations Are Traveling Waves in the Human Neocortex.
Neuron. 2018 Jun 27;98(6):1269-1281.e4. doi: 10.1016/j.neuron.2018.05.019. Epub 2018 Jun 7.
6
Localization of deep brain activity with scalp and subdural EEG.
Neuroimage. 2020 Dec;223:117344. doi: 10.1016/j.neuroimage.2020.117344. Epub 2020 Sep 6.
8
Traveling Waves in Quasi-One-Dimensional Neuronal Minicolumns.
Neural Comput. 2021 Dec 15;34(1):78-103. doi: 10.1162/neco_a_01451.
10
Correlates of spreading depolarization in human scalp electroencephalography.
Brain. 2012 Mar;135(Pt 3):853-68. doi: 10.1093/brain/aws010.

引用本文的文献

1
Modulation of motor excitability reflects traveling waves of neural oscillations.
Cell Rep. 2025 Jun 24;44(6):115864. doi: 10.1016/j.celrep.2025.115864. Epub 2025 Jun 14.
2
Alpha Traveling Waves during Working Memory: Disentangling Bottom-Up Gating and Top-Down Gain Control.
J Neurosci. 2024 Dec 11;44(50):e0532242024. doi: 10.1523/JNEUROSCI.0532-24.2024.
4
A Roadmap for Computational Modelling of M/EEG.
Brain Topogr. 2022 Jan;35(1):1-3. doi: 10.1007/s10548-022-00889-x. Epub 2022 Jan 27.

本文引用的文献

1
The generation and propagation of the human alpha rhythm.
Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23772-23782. doi: 10.1073/pnas.1913092116. Epub 2019 Nov 4.
3
Theta and Alpha Oscillations Are Traveling Waves in the Human Neocortex.
Neuron. 2018 Jun 27;98(6):1269-1281.e4. doi: 10.1016/j.neuron.2018.05.019. Epub 2018 Jun 7.
4
Cortical travelling waves: mechanisms and computational principles.
Nat Rev Neurosci. 2018 May;19(5):255-268. doi: 10.1038/nrn.2018.20. Epub 2018 Mar 22.
5
Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.
J Neurosci. 2017 Oct 18;37(42):10139-10153. doi: 10.1523/JNEUROSCI.3800-16.2017. Epub 2017 Sep 18.
6
Local Field Potentials: Myths and Misunderstandings.
Front Neural Circuits. 2016 Dec 15;10:101. doi: 10.3389/fncir.2016.00101. eCollection 2016.
7
Discrepancies between Multi-Electrode LFP and CSD Phase-Patterns: A Forward Modeling Study.
Front Neural Circuits. 2016 Jul 15;10:51. doi: 10.3389/fncir.2016.00051. eCollection 2016.
8
Traveling Theta Waves in the Human Hippocampus.
J Neurosci. 2015 Sep 9;35(36):12477-87. doi: 10.1523/JNEUROSCI.5102-14.2015.
9
Communication through coherence with inter-areal delays.
Curr Opin Neurobiol. 2015 Apr;31:173-80. doi: 10.1016/j.conb.2014.11.001. Epub 2014 Nov 20.
10
Generation of field potentials and modulation of their dynamics through volume integration of cortical activity.
J Neurophysiol. 2015 Jan 1;113(1):339-51. doi: 10.1152/jn.00914.2013. Epub 2014 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验