Haigh Zachary J, Tran Harry, Berger Taylor, Shirinpour Sina, Alekseichuk Ivan, Koenig Seth, Zimmermann Jan, McGovern Robert, Darrow David, Herman Alexander, Wischnewski Miles, Opitz Alexander
Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Cell Rep. 2025 Jun 24;44(6):115864. doi: 10.1016/j.celrep.2025.115864. Epub 2025 Jun 14.
Neural traveling waves represent an important endogenous phenomenon with structural and functional relevance in the human brain. These waves, commonly recorded via electroencephalogram (EEG) or electrocorticography (ECoG), are implicated in a range of brain processes. However, it remains unclear how they influence neural excitability across brain regions. Advancements in real-time control of brain stimulation present opportunities to compare traveling waves and excitation. Here, we investigate how sensorimotor mu (8-13 Hz) and beta (14-30 Hz) traveling waves affect motor cortex excitability using real-time EEG-controlled transcranial magnetic stimulation (TMS). We observed gradients in the mediolateral direction and then validated these findings using ECoG recordings in a human participant and a nonhuman primate. Our results demonstrate that neuronal excitability reflects the natural patterns of sensorimotor traveling waves. This provides important evidence of traveling waves modulating neural excitability in humans. This opens possibilities for more effective stimulation protocols aligned with intrinsic brain dynamics.
神经行波是一种重要的内源性现象,在人类大脑中具有结构和功能相关性。这些波通常通过脑电图(EEG)或皮质脑电图(ECoG)记录,与一系列大脑过程有关。然而,它们如何影响跨脑区的神经兴奋性仍不清楚。脑刺激实时控制技术的进步为比较行波和兴奋性提供了机会。在这里,我们使用实时脑电图控制的经颅磁刺激(TMS)来研究感觉运动μ波(8 - 13赫兹)和β波(14 - 30赫兹)行波如何影响运动皮层兴奋性。我们观察到了在中外侧方向上的梯度,然后在一名人类参与者和一只非人类灵长类动物中使用ECoG记录验证了这些发现。我们的结果表明,神经元兴奋性反映了感觉运动行波的自然模式。这为行波在人类中调节神经兴奋性提供了重要证据。这为与大脑内在动力学相一致的更有效刺激方案开辟了可能性。