Suppr超能文献

准一维神经元柱中的行波

Traveling Waves in Quasi-One-Dimensional Neuronal Minicolumns.

机构信息

Department of Physics, Drexel University, Philadelphia, PA 19104, U.S.A.

出版信息

Neural Comput. 2021 Dec 15;34(1):78-103. doi: 10.1162/neco_a_01451.

Abstract

Traveling waves of neuronal activity in the cortex have been observed in vivo. These traveling waves have been correlated to various features of observed cortical dynamics, including spike timing variability and correlated fluctuations in neuron membrane potential. Although traveling waves are typically studied as either strictly one-dimensional or two-dimensional excitations, here we investigate the conditions for the existence of quasi-one-dimensional traveling waves that could be sustainable in parts of the brain containing cortical minicolumns. For that, we explore a quasi-one-dimensional network of heterogeneous neurons with a biologically influenced computational model of neuron dynamics and connectivity. We find that background stimulus reliably evokes traveling waves in networks with local connectivity between neurons. We also observe traveling waves in fully connected networks when a model for action potential propagation speed is incorporated. The biological properties of the neurons influence the generation and propagation of the traveling waves. Our quasi-one-dimensional model is not only useful for studying the basic properties of traveling waves in neuronal networks; it also provides a simplified representation of possible wave propagation in columnar or minicolumnar networks found in the cortex.

摘要

在皮层中观察到了神经元活动的行波。这些行波与观察到的皮层动力学的各种特征相关联,包括尖峰时间变异性和神经元膜电位的相关波动。尽管行波通常被研究为严格的一维或二维激发,但在这里,我们研究了准一维行波存在的条件,这些行波在包含皮层小柱的大脑部分可能是可持续的。为此,我们探索了一个具有神经元动力和连接性生物影响计算模型的准一维异质神经元网络。我们发现,当神经元之间存在局部连接时,背景刺激可以可靠地在网络中引发行波。当包含动作电位传播速度模型时,我们也观察到了全连接网络中的行波。神经元的生物学特性影响行波的产生和传播。我们的准一维模型不仅有助于研究神经元网络中行波的基本特性,还为在皮层中发现的柱状或小柱网络中的可能波传播提供了简化表示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验