Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
Metabolism. 2021 Aug;121:154803. doi: 10.1016/j.metabol.2021.154803. Epub 2021 Jun 4.
A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains highly controversial.
19 healthy adults (age:28.4 ± 1.7 years; BMI:22.7 ± 0.3 kg/m) received an overnight intravenous infusion of lipid (20% Intralipid) or saline followed by a hyperinsulinemic-euglycemic clamp to assess insulin sensitivity using a randomized crossover design. Skeletal muscle biopsies were obtained after the overnight lipid infusion to evaluate activation of mitochondrial dynamics proteins, ex-vivo mitochondrial membrane potential, ex-vivo oxidative phosphorylation and electron transfer capacity, and mitochondrial ultrastructure.
Overnight lipid infusion increased dynamin related protein 1 (DRP1) phosphorylation at serine 616 and PTEN-induced kinase 1 (PINK1) expression (P = 0.003 and P = 0.008, respectively) in skeletal muscle while reducing mitochondrial membrane potential (P = 0.042). The lipid infusion also increased mitochondrial-associated lipid droplet formation (P = 0.011), the number of dilated cristae, and the presence of autophagic vesicles without altering mitochondrial number or respiratory capacity. Additionally, lipid infusion suppressed peripheral glucose disposal (P = 0.004) and hepatic insulin sensitivity (P = 0.014).
These findings indicate that activation of mitochondrial fission and quality control occur early in the onset of insulin resistance in human skeletal muscle. Targeting mitochondrial dynamics and quality control represents a promising new pharmacological approach for treating insulin resistance and type 2 diabetes.
NCT02697201, ClinicalTrials.gov.
由于异位脂质积累和过量营养摄入导致的骨骼肌线粒体功能减退被认为是导致胰岛素抵抗和 2 型糖尿病发展的原因。然而,胰岛素抵抗骨骼肌中线粒体的功能完整性仍然存在很大争议。
19 名健康成年人(年龄:28.4±1.7 岁;BMI:22.7±0.3kg/m²)接受了一夜之间的静脉内输注脂质(20%Intralipid)或生理盐水,然后进行高胰岛素-正常血糖钳夹以使用随机交叉设计评估胰岛素敏感性。在一夜之间的脂质输注后,获取骨骼肌活检以评估线粒体动力学蛋白的激活、体外线粒体膜电位、体外氧化磷酸化和电子转移能力以及线粒体超微结构。
脂质输注增加了骨骼肌中 DRP1 丝氨酸 616 磷酸化和 PTEN 诱导的激酶 1(PINK1)表达(P=0.003 和 P=0.008),同时降低了线粒体膜电位(P=0.042)。脂质输注还增加了线粒体相关的脂质滴形成(P=0.011)、扩张嵴的数量和自噬小泡的存在,而不改变线粒体数量或呼吸能力。此外,脂质输注抑制了外周葡萄糖处置(P=0.004)和肝胰岛素敏感性(P=0.014)。
这些发现表明,线粒体裂变和质量控制的激活发生在人类骨骼肌胰岛素抵抗的早期。靶向线粒体动力学和质量控制可能代表一种有前途的新的治疗胰岛素抵抗和 2 型糖尿病的药理学方法。
NCT02697201,ClinicalTrials.gov。