Suppr超能文献

深度学习确定的吸烟状况对癌症患者死亡率的影响:戒烟永远不会太晚。

Impact of deep learning-determined smoking status on mortality of cancer patients: never too late to quit.

机构信息

Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland.

University of Turku, Turku, Finland; Department of Oncology, Turku University Hospital, Turku, Finland; FICAN West Cancer Centre, Turku, Finland.

出版信息

ESMO Open. 2021 Jun;6(3):100175. doi: 10.1016/j.esmoop.2021.100175. Epub 2021 Jun 3.

Abstract

BACKGROUND

Persistent smoking after cancer diagnosis is associated with increased overall mortality (OM) and cancer mortality (CM). According to the 2020 Surgeon General's report, smoking cessation may reduce CM but supporting evidence is not wide. Use of deep learning-based modeling that enables universal natural language processing of medical narratives to acquire population-based real-life smoking data may help overcome the challenge. We assessed the effect of smoking status and within-1-year smoking cessation on CM by an in-house adapted freely available language processing algorithm.

MATERIALS AND METHODS

This cross-sectional real-world study included 29 823 patients diagnosed with cancer in 2009-2018 in Southwest Finland. The medical narrative, International Classification of Diseases-10th edition codes, histology, cancer treatment records, and death certificates were combined. Over 162 000 sentences describing tobacco smoking behavior were analyzed with ULMFiT and BERT algorithms.

RESULTS

The language model classified the smoking status of 23 031 patients. Recent quitters had reduced CM [hazard ratio (HR) 0.80 (0.74-0.87)] and OM [HR 0.78 (0.72-0.84)] compared to persistent smokers. Compared to never smokers, persistent smokers had increased CM in head and neck, gastro-esophageal, pancreatic, lung, prostate, and breast cancer and Hodgkin's lymphoma, irrespective of age, comorbidities, performance status, or presence of metastatic disease. Increased CM was also observed in smokers with colorectal cancer, men with melanoma or bladder cancer, and lymphoid and myeloid leukemia, but no longer independently of the abovementioned covariates. Specificity and sensitivity were 96%/96%, 98%/68%, and 88%/99% for never, former, and current smokers, respectively, being essentially the same with both models.

CONCLUSIONS

Deep learning can be used to classify large amounts of smoking data from the medical narrative with good accuracy. The results highlight the detrimental effects of persistent smoking in oncologic patients and emphasize that smoking cessation should always be an essential element of patient counseling.

摘要

背景

癌症诊断后持续吸烟与总死亡率(OM)和癌症死亡率(CM)增加有关。根据 2020 年外科医生总干事的报告,戒烟可能会降低 CM,但支持这一证据并不广泛。使用基于深度学习的建模,使医疗叙事的通用自然语言处理能够获取基于人群的真实吸烟数据,可能有助于克服这一挑战。我们使用内部改编的免费语言处理算法评估了吸烟状况和 1 年内戒烟对 CM 的影响。

材料和方法

这是一项横断面真实世界研究,纳入了 2009 年至 2018 年在芬兰西南部诊断为癌症的 29823 名患者。将医疗叙事、国际疾病分类第 10 版代码、组织学、癌症治疗记录和死亡证明相结合。使用 ULMFiT 和 BERT 算法分析了超过 162000 个描述吸烟行为的句子。

结果

语言模型对 23031 名患者的吸烟状况进行了分类。与持续吸烟者相比,近期戒烟者的 CM[风险比(HR)0.80(0.74-0.87)]和 OM[HR 0.78(0.72-0.84)]降低。与从不吸烟者相比,持续吸烟者的头颈部、胃食管、胰腺、肺部、前列腺和乳腺癌以及霍奇金淋巴瘤的 CM 增加,无论年龄、合并症、表现状态或是否存在转移疾病。在结直肠癌、男性黑色素瘤或膀胱癌以及淋巴和髓样白血病患者中也观察到 CM 增加,但不再独立于上述协变量。对于从不吸烟者、前吸烟者和当前吸烟者,特异性和敏感性分别为 96%/96%、98%/68%和 88%/99%,两种模型基本相同。

结论

深度学习可用于从医疗叙事中分类大量的吸烟数据,且具有较高的准确性。研究结果强调了持续吸烟对肿瘤患者的有害影响,并强调戒烟应始终是患者咨询的重要组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5e/8182259/a3316d28e9c5/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验