Suppr超能文献

吸烟是所有类型手术并发症的预测因素:基于机器学习的大数据研究。

Smoking is a predictor of complications in all types of surgery: a machine learning-based big data study.

机构信息

Department of Pulmonary Medicine, HUS Heart and Lung Center, Helsinki, Finland.

Doctoral Programme of Clinical Research, University of Helsinki, Helsinki, Finland.

出版信息

BJS Open. 2023 Mar 7;7(2). doi: 10.1093/bjsopen/zrad016.

Abstract

BACKGROUND

Machine learning algorithms are promising tools for smoking status classification in big patient data sets. Smoking is a risk factor for postoperative complications in major surgery. Whether this applies to all surgery is unknown. The aims of this retrospective cohort study were to develop a machine learning algorithm for clinical record-based smoking status classification and to determine whether smoking and former smoking predict complications in all surgery types.

METHODS

All surgeries performed in a Finnish hospital district from 1 January 2015 to 31 December 2019 were analysed. Exclusion criteria were age below 16 years, unknown smoking status, and unknown ASA class. A machine learning algorithm was developed for smoking status classification. The primary outcome was 90-day overall postoperative complications in all surgeries. Secondary outcomes were 90-day overall complications in specialties with over 10 000 surgeries and critical complications in all surgeries.

RESULTS

The machine learning algorithm had precisions of 0.958 for current smokers, 0.974 for ex-smokers, and 0.95 for never-smokers. The sample included 158 638 surgeries. In adjusted logistic regression analyses, smokers had increased odds of overall complications (odds ratio 1.17; 95 per cent c.i. 1.14 to 1.20) and critical complications (odds ratio 1.21; 95 per cent c.i. 1.14 to 1.29). Corresponding odds ratios of ex-smokers were 1.09 (95 per cent c.i. 1.06 to 1.13) and 1.09 (95 per cent c.i. 1.02 to 1.17). Smokers had increased odds of overall complications in all specialties with over 10 000 surgeries. ASA class was the most important complication predictor.

CONCLUSION

Machine learning algorithms are feasible for smoking status classification in big surgical data sets. Current and former smoking predict complications in all surgery types.

摘要

背景

机器学习算法是在大型患者数据集中文献分类的有前途的工具。吸烟是主要手术术后并发症的一个风险因素。但这是否适用于所有手术类型尚不清楚。本回顾性队列研究的目的是开发一种基于临床记录的吸烟状况分类的机器学习算法,并确定吸烟和以前吸烟是否会预测所有手术类型的并发症。

方法

分析了 2015 年 1 月 1 日至 2019 年 12 月 31 日在芬兰一个地区医院进行的所有手术。排除标准为年龄<16 岁、吸烟状况不明和 ASA 分级不明。开发了一种用于吸烟状况分类的机器学习算法。主要结局为所有手术的 90 天总体术后并发症。次要结局为 10000 例以上手术的专科 90 天总体并发症和所有手术的危急并发症。

结果

机器学习算法对当前吸烟者的准确率为 0.958,对前吸烟者的准确率为 0.974,对从不吸烟者的准确率为 0.95。样本包括 158638 例手术。在调整后的逻辑回归分析中,吸烟者发生总体并发症的几率增加(比值比 1.17;95%置信区间 1.14 至 1.20)和危急并发症的几率增加(比值比 1.21;95%置信区间 1.14 至 1.29)。前吸烟者的相应比值比为 1.09(95%置信区间 1.06 至 1.13)和 1.09(95%置信区间 1.02 至 1.17)。吸烟者在所有有 10000 例以上手术的专科中发生总体并发症的几率增加。ASA 分级是最重要的并发症预测因素。

结论

机器学习算法可用于大型手术数据集中文献分类。目前和以前吸烟会预测所有手术类型的并发症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/937c/10122503/c29f325d9cc7/zrad016f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验