Suppr超能文献

基于 EEG 数据分析的图论在阿尔茨海默病与血管性痴呆诊断中的应用贡献。

Contribution of Graph Theory Applied to EEG Data Analysis for Alzheimer's Disease Versus Vascular Dementia Diagnosis.

机构信息

Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy.

Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milano, Italy.

出版信息

J Alzheimers Dis. 2021;82(2):871-879. doi: 10.3233/JAD-210394.

Abstract

BACKGROUND

Most common progressive brain diseases in the elderly are Alzheimer's disease (AD) and vascular dementia (VaD). They present with relatively similar clinical symptoms of cognitive decline, but the underlying pathophysiological mechanisms are different.

OBJECTIVE

The aim is to explore the brain connectivity differences between AD and VaD patients compared to mild cognitive impairment (MCI) and normal elderly (Nold) subjects applying graph theory, in particular the Small World (SW) analysis.

METHODS

274 resting state EEGs were analyzed in 100 AD, 80 MCI, 40 VaD, and 54 Nold subjects. Graph theory analyses were applied to undirected and weighted networks obtained by lagged linear coherence evaluated by eLORETA tool.

RESULTS

VaD and AD patients presented more ordered low frequency structure (lower value of SW) than Nold and MCI subjects, and more random organization (higher value of SW) in low and high frequency alpha rhythms. Differences between patients have been found in high frequency alpha rhythms in VaD (higher value of SW) with respect to AD, and in theta band with a trend which is more similar to MCI and Nold than to AD. MCI subjects presented a network organization which is intermediate, in low frequency bands, between Nold and patients.

CONCLUSION

Graph theory applied to EEG data has proved very useful in identifying differences in brain network patterns in subjects with dementia, proving to be a valid tool for differential diagnosis. Future studies will aim to validate this method to diagnose especially in the early stages of the disease and at single subject level.

摘要

背景

老年人中最常见的进行性脑部疾病是阿尔茨海默病(AD)和血管性痴呆(VaD)。它们表现出相对相似的认知能力下降的临床症状,但潜在的病理生理学机制不同。

目的

本研究旨在应用图论,特别是小世界(SW)分析,探讨 AD 和 VaD 患者与轻度认知障碍(MCI)和正常老年人(Nold)受试者之间的脑连接差异。

方法

对 100 例 AD、80 例 MCI、40 例 VaD 和 54 例 Nold 受试者的 274 例静息状态 EEG 进行分析。图论分析应用于滞后线性相干性通过 eLORETA 工具评估的无向和加权网络。

结果

VaD 和 AD 患者的低频结构(SW 值较低)比 Nold 和 MCI 受试者更有序,而低频和高频α节律的组织更随机。VaD 患者的高频α节律(SW 值较高)与 AD 患者之间存在差异,而在θ频段则与 MCI 和 Nold 更相似,而与 AD 更相似,这一趋势表明存在差异。MCI 受试者的网络组织在低频波段介于 Nold 和患者之间,处于中间位置。

结论

将图论应用于 EEG 数据已被证明非常有助于识别痴呆症患者脑网络模式的差异,是一种有效的鉴别诊断工具。未来的研究将旨在验证该方法,特别是在疾病的早期阶段和在单个受试者水平上进行诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验