Suppr超能文献

生理和病理衰老中的人类脑网络:脑电图在皮质连接性方面的图论分析的可重复性

Human Brain Networks in Physiological and Pathological Aging: Reproducibility of Electroencephalogram Graph Theoretical Analysis in Cortical Connectivity.

作者信息

Vecchio Fabrizio, Miraglia Francesca, Alù Francesca, Judica Elda, Cotelli Maria, Pellicciari Maria Concetta, Rossini Paolo Maria

机构信息

Department of Neuroscience and Neurorehabilitation, Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy.

Department of Theoretical and Applied Sciences, eCampus University, Como, Italy.

出版信息

Brain Connect. 2022 Feb;12(1):41-51. doi: 10.1089/brain.2020.0824. Epub 2021 Dec 24.

Abstract

Physiological and pathological brain aging plays a central role in brain network modulation. The aim of the present article was to assess the stability of a proposed method for evaluation of small-world (SW) characteristics for the study of the human connectome. Eighty subjects were recruited: 36 young healthy controls, 32 elderly healthy controls, and 12 patients affected by Alzheimer's disease (AD). Electroencephalograms (EEGs) were recorded during six separate sessions (480 recordings) at an average intersession interval of 3.8 ± 0.2 days. We applied graph theory functions to the weighted and undirected networks obtained by the lagged linear coherence estimated by exact low-resolution electromagnetic tomography (eLORETA). We explored the following frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-40 Hz). The proposed method for evaluation of SW characteristics exhibited good reproducibility and stability. Furthermore, results showed the pattern, Young>Elderly>AD, in low-frequency delta and theta bands and vice versa in the higher alpha band. Finally, a correlation with age was confirmed in healthy subjects, showing that the older the age, the higher the SW values for alpha 2. Evidences from the present study confirm the stability of the SW index and suggest that the analysis of connectivity patterns evaluated from EEGs can be supported by the graph theory. The proposed method for evaluation of SW characteristics has shown good reproducibility and stability. This technique, applied to patient data, could provide more information on the pathophysiological processes underlying age-related brain disconnection, as well as on administration of rehabilitation treatments at the right time, which could allow patients to avoid unnecessary interventions. Impact statement The graph analysis tools described in this study represent an interesting approach to study the distinctive characteristics of physiological aging by focusing on functional connectivity networks. The proposed method for evaluation of small-world characteristics has shown good reproducibility and stability. This technique, applied to patient data, could provide more information on the pathophysiological processes underlying age-related brain disconnection, as well as on delivery of rehabilitation treatments at the right time, which could allow patients to avoid unnecessary interventions.

摘要

生理性和病理性脑老化在脑网络调节中起核心作用。本文旨在评估一种用于研究人类连接组的小世界(SW)特征评估方法的稳定性。招募了80名受试者:36名年轻健康对照者、32名老年健康对照者和12名阿尔茨海默病(AD)患者。在六个独立的时段(480次记录)记录脑电图(EEG),平均时段间隔为3.8±0.2天。我们将图论函数应用于通过精确低分辨率电磁断层扫描(eLORETA)估计的滞后线性相干性获得的加权无向网络。我们探索了以下频段:δ(2-4Hz)、θ(4-8Hz)、α1(8-10.5Hz)、α2(10.5-13Hz)、β1(13-20Hz)、β2(20-30Hz)和γ(30-40Hz)。所提出的SW特征评估方法具有良好的重现性和稳定性。此外,结果显示在低频δ和θ频段呈现年轻>老年>AD的模式,而在较高的α频段则相反。最后,在健康受试者中证实了与年龄的相关性,表明年龄越大,α2的SW值越高。本研究的证据证实了SW指数的稳定性,并表明从脑电图评估的连接模式分析可以得到图论的支持。所提出的SW特征评估方法具有良好的重现性和稳定性。将该技术应用于患者数据,可以提供更多关于与年龄相关的脑连接中断的病理生理过程的信息,以及关于适时进行康复治疗的信息,这可以使患者避免不必要的干预。影响声明本研究中描述 的图分析工具代表了一种有趣的方法,通过关注功能连接网络来研究生理性老化的独特特征。所提出的小世界特征评估方法具有良好的重现性和稳定性。将该技术应用于患者数据,可以提供更多关于与年龄相关的脑连接中断的病理生理过程的信息,以及关于适时进行康复治疗的信息,这可以使患者避免不必要的干预。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验