Suppr超能文献

与轻度认知障碍相关的静息态脑电图特征。

Resting-state electroencephalographic characteristics related to mild cognitive impairments.

作者信息

Kim Seong-Eun, Shin Chanwoo, Yim Junyeop, Seo Kyoungwon, Ryu Hokyoung, Choi Hojin, Park Jinseok, Min Byoung-Kyong

机构信息

Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea.

Department of Applied Mathematics, Kongju National University, Gongju-si, Republic of Korea.

出版信息

Front Psychiatry. 2023 Sep 13;14:1231861. doi: 10.3389/fpsyt.2023.1231861. eCollection 2023.

Abstract

Alzheimer's disease (AD) causes a rapid deterioration in cognitive and physical functions, including problem-solving, memory, language, and daily activities. Mild cognitive impairment (MCI) is considered a risk factor for AD, and early diagnosis and treatment of MCI may help slow the progression of AD. Electroencephalography (EEG) analysis has become an increasingly popular tool for developing biomarkers for MCI and AD diagnosis. Compared with healthy elderly, patients with AD showed very clear differences in EEG patterns, but it is inconclusive for MCI. This study aimed to investigate the resting-state EEG features of individuals with MCI ( = 12) and cognitively healthy controls (HC) ( = 13) with their eyes closed. EEG data were analyzed using spectral power, complexity, functional connectivity, and graph analysis. The results revealed no significant difference in EEG spectral power between the HC and MCI groups. However, we observed significant changes in brain complexity and networks in individuals with MCI compared with HC. Patients with MCI exhibited lower complexity in the middle temporal lobe, lower global efficiency in theta and alpha bands, higher local efficiency in the beta band, lower nodal efficiency in the frontal theta band, and less small-world network topology compared to the HC group. These observed differences may be related to underlying neuropathological alterations associated with MCI progression. The findings highlight the potential of network analysis as a promising tool for the diagnosis of MCI.

摘要

阿尔茨海默病(AD)会导致认知和身体功能迅速衰退,包括解决问题的能力、记忆力、语言能力及日常活动能力。轻度认知障碍(MCI)被认为是AD的一个风险因素,对MCI的早期诊断和治疗可能有助于减缓AD的进展。脑电图(EEG)分析已成为开发用于MCI和AD诊断生物标志物的越来越受欢迎的工具。与健康老年人相比,AD患者的EEG模式存在非常明显的差异,但对于MCI来说尚无定论。本研究旨在调查12名MCI个体和13名认知健康对照者(HC)闭眼时的静息态EEG特征。使用频谱功率、复杂度、功能连接性和图分析对EEG数据进行分析。结果显示,HC组和MCI组之间的EEG频谱功率没有显著差异。然而,我们观察到与HC相比,MCI个体的大脑复杂度和网络存在显著变化。与HC组相比,MCI患者在颞中叶表现出较低的复杂度,在θ和α频段表现出较低的全局效率,在β频段表现出较高的局部效率,在额叶θ频段表现出较低的节点效率,并且小世界网络拓扑结构较少。这些观察到的差异可能与MCI进展相关的潜在神经病理学改变有关。这些发现突出了网络分析作为一种有前景的MCI诊断工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f435/10539934/99b312fcb6e5/fpsyt-14-1231861-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验