Suppr超能文献

通过拉格朗日重新参数化优化不可分解的数据依赖正则化器可带来显著的性能和效率提升。

Optimizing Nondecomposable Data Dependent Regularizers via Lagrangian Reparameterization Offers Significant Performance and Efficiency Gains.

作者信息

Ravi Sathya N, Venkatesh Abhay, Fung Glenn M, Singh Vikas

机构信息

University of Illinois at Chicago.

University of Wisconsin-Madison.

出版信息

Proc AAAI Conf Artif Intell. 2020 Jun 16;34(4):5487-5494. doi: 10.1609/aaai.v34i04.5999.

Abstract

Data dependent regularization is known to benefit a wide variety of problems in machine learning. Often, these regularizers cannot be easily decomposed into a sum over a finite number of terms, e.g., a sum over individual example-wise terms. The measure, Area under the ROC curve (AUCROC) and Precision at a fixed recall (P@R) are some prominent examples that are used in many applications. We find that for most medium to large sized datasets, scalability issues severely limit our ability in leveraging the benefits of such regularizers. Importantly, the key technical impediment despite some recent progress is that, such objectives remain difficult to optimize via backpropapagation procedures. While an efficient general-purpose strategy for this problem still remains elusive, in this paper, we show that for many data-dependent nondecomposable regularizers that are relevant in applications, sizable gains in efficiency are possible with minimal code-level changes; in other words, no specialized tools or numerical schemes are needed. Our procedure involves a reparameterization followed by a partial dualization - this leads to a formulation that has provably cheap projection operators. We present a detailed analysis of runtime and convergence properties of our algorithm. On the experimental side, we show that a direct use of our scheme significantly improves the state of the art IOU measures reported for MSCOCO Stuff segmentation dataset.

摘要

数据依赖正则化已知有利于机器学习中的各种问题。通常,这些正则化器不能轻易分解为有限数量项的总和,例如,单个示例项的总和。曲线下面积(AUCROC)和固定召回率下的精确率(P@R)等度量是许多应用中使用的一些突出示例。我们发现,对于大多数中型到大型数据集,可扩展性问题严重限制了我们利用此类正则化器优势的能力。重要的是,尽管最近有一些进展,但关键的技术障碍在于,此类目标仍然难以通过反向传播过程进行优化。虽然针对这个问题的高效通用策略仍然难以捉摸,但在本文中,我们表明,对于许多在应用中相关的数据依赖不可分解正则化器,只需进行最少的代码级更改就可以在效率上取得显著提升;换句话说,不需要专门的工具或数值方案。我们的过程包括重新参数化,然后进行部分对偶化——这导致了一种具有可证明廉价投影算子的公式。我们对算法的运行时和收敛特性进行了详细分析。在实验方面,我们表明直接使用我们的方案显著提高了MSCOCO Stuff分割数据集报告的当前最佳交并比(IOU)度量。

相似文献

3
Learning Iteration-wise Generalized Shrinkage-Thresholding Operators for Blind Deconvolution.学习迭代广义收缩阈值算子的盲反卷积。
IEEE Trans Image Process. 2016 Apr;25(4):1751-64. doi: 10.1109/TIP.2016.2531905. Epub 2016 Feb 18.
7
Optimizing nondecomposable loss functions in structured prediction.优化结构预测中的不可分解损失函数。
IEEE Trans Pattern Anal Mach Intell. 2013 Apr;35(4):911-24. doi: 10.1109/TPAMI.2012.168.

本文引用的文献

2
Object Detection With Deep Learning: A Review.基于深度学习的目标检测研究综述。
IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3212-3232. doi: 10.1109/TNNLS.2018.2876865. Epub 2019 Jan 28.
3
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
4
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
5
Optimal Thresholding of Classifiers to Maximize F1 Measure.分类器的最优阈值设定以最大化F1度量
Mach Learn Knowl Discov Databases. 2014;8725:225-239. doi: 10.1007/978-3-662-44851-9_15.
6
Beyond the t-test: statistical equivalence testing.超越t检验:统计等效性检验。
Anal Chem. 2005 Jun 1;77(11):221A-226A. doi: 10.1021/ac053390m.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验