Suppr超能文献

自适应图像处理:一阶偏微分方程约束正则化器与双层训练方案

Adaptive Image Processing: First Order PDE Constraint Regularizers and a Bilevel Training Scheme.

作者信息

Davoli Elisa, Fonseca Irene, Liu Pan

机构信息

Institute of Analysis and Scientific Computing, TU Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria.

Department of Mathematics, Center of Nonlinear Analysis, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA.

出版信息

J Nonlinear Sci. 2023;33(3):41. doi: 10.1007/s00332-023-09902-4. Epub 2023 Mar 3.

Abstract

A bilevel training scheme is used to introduce a novel class of regularizers, providing a unified approach to standard regularizers and . Optimal parameters and regularizers are identified, and the existence of a solution for any given set of training imaging data is proved by -convergence under a conditional uniform bound on the trace constant of the operators and a finite-null-space condition. Some first examples and numerical results are given.

摘要

采用一种双层训练方案来引入一类新型正则化器,为标准正则化器提供了一种统一的方法。确定了最优参数和正则化器,并在算子迹常数的条件一致有界和有限零空间条件下,通过Γ收敛证明了对于任何给定的一组训练成像数据都存在解。给出了一些初步示例和数值结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d03/9984542/3bf2932e7706/332_2023_9902_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验