Suppr超能文献

MetaMT,一种利用多领域数据进行低资源机器翻译的元学习方法。

MetaMT, a Meta Learning Method Leveraging Multiple Domain Data for Low Resource Machine Translation.

作者信息

Li Rumeng, Wang Xun, Yu Hong

机构信息

School of Computer Science, University of Massachusetts Amherst, Amherst, MA, United States.

Department of Computer Science, University of Massachusetts Lowell, Lowell, MA, United States.

出版信息

Proc AAAI Conf Artif Intell. 2020;34(5):8245-8252. doi: 10.1609/aaai.v34i05.6339. Epub 2020 Apr 3.

Abstract

Neural machine translation (NMT) models have achieved state-of-the-art translation quality with a large quantity of parallel corpora available. However, their performance suffers significantly when it comes to domain-specific translations, in which training data are usually scarce. In this paper, we present a novel NMT model with a new word embedding transition technique for fast domain adaption. We propose to split parameters in the model into two groups: model parameters and meta parameters. The former are used to model the translation while the latter are used to adjust the representational space to generalize the model to different domains. We mimic the domain adaptation of the machine translation model to low-resource domains using multiple translation tasks on different domains. A new training strategy based on meta-learning is developed along with the proposed model to update the model parameters and meta parameters alternately. Experiments on datasets of different domains showed substantial improvements of NMT performances on a limited amount of data.

摘要

神经机器翻译(NMT)模型在有大量平行语料库可用的情况下已经实现了最先进的翻译质量。然而,当涉及特定领域的翻译时,它们的性能会显著下降,因为在这些领域中训练数据通常很少。在本文中,我们提出了一种新颖的NMT模型,该模型采用了一种新的词嵌入转换技术来实现快速的领域适应。我们建议将模型中的参数分为两组:模型参数和元参数。前者用于对翻译进行建模,而后者用于调整表示空间,以便将模型推广到不同领域。我们通过在不同领域上进行多个翻译任务来模拟机器翻译模型对低资源领域的适应。随着所提出的模型,还开发了一种基于元学习的新训练策略,以交替更新模型参数和元参数。在不同领域的数据集上进行的实验表明,在有限的数据量上,NMT的性能有了显著提高。

相似文献

6
Scaling neural machine translation to 200 languages.将神经机器翻译扩展到 200 种语言。
Nature. 2024 Jun;630(8018):841-846. doi: 10.1038/s41586-024-07335-x. Epub 2024 Jun 5.
7
Non-Fluent Synthetic Target-Language Data Improve Neural Machine Translation.非流畅合成目标语言数据可提升神经机器翻译。
IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):837-850. doi: 10.1109/TPAMI.2023.3333949. Epub 2024 Jan 8.

本文引用的文献

1
Meta Networks.元网络
Proc Mach Learn Res. 2017 Aug;70:2554-2563.
2
Long short-term memory.长短期记忆
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验