Suppr超能文献

基于计算机断层扫描影像组学的XGBoost分类器预测胰腺导管腺癌患者肿瘤浸润性CD8 T细胞

XGBoost Classifier Based on Computed Tomography Radiomics for Prediction of Tumor-Infiltrating CD8 T-Cells in Patients With Pancreatic Ductal Adenocarcinoma.

作者信息

Li Jing, Shi Zhang, Liu Fang, Fang Xu, Cao Kai, Meng Yinghao, Zhang Hao, Yu Jieyu, Feng Xiaochen, Li Qi, Liu Yanfang, Wang Li, Jiang Hui, Lu Jianping, Shao Chengwei, Bian Yun

机构信息

Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China.

Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, China.

出版信息

Front Oncol. 2021 May 19;11:671333. doi: 10.3389/fonc.2021.671333. eCollection 2021.

Abstract

OBJECTIVES

This study constructed and validated a machine learning model to predict CD8 tumor-infiltrating lymphocyte expression levels in patients with pancreatic ductal adenocarcinoma (PDAC) using computed tomography (CT) radiomic features.

MATERIALS AND METHODS

In this retrospective study, 184 PDAC patients were randomly assigned to a training dataset (n =137) and validation dataset (n =47). All patients were divided into CD8 T-high and -low groups using X-tile plots. A total of 1409 radiomics features were extracted from the segmentation of regions of interest, based on preoperative CT images of each patient. The LASSO algorithm was applied to reduce the dimensionality of the data and select features. The extreme gradient boosting classifier (XGBoost) was developed using a training set consisting of 137 consecutive patients admitted between January 2017 and December 2017. The model was validated in 47 consecutive patients admitted between January 2018 and April 2018. The performance of the XGBoost classifier was determined by its discriminative ability, calibration, and clinical usefulness.

RESULTS

The cut-off value of the CD8 T-cell level was 18.69%, as determined by the X-tile program. A Kaplan-Meier analysis indicated a correlation between higher CD8 T-cell levels and better overall survival ( = 0.001). The XGBoost classifier showed good discrimination in the training set (area under curve [AUC], 0.75; 95% confidence interval [CI]: 0.67-0.83) and validation set (AUC, 0.67; 95% CI: 0.51-0.83). Moreover, it showed a good calibration. The sensitivity, specificity, accuracy, positive and negative predictive values were 80.65%, 60.00%, 0.69, 0.63, and 0.79, respectively, for the training set, and 80.95%, 57.69%, 0.68, 0.61, and 0.79, respectively, for the validation set.

CONCLUSIONS

We developed a CT-based XGBoost classifier to extrapolate the infiltration levels of CD8 T-cells in patients with PDAC. This method could be useful in identifying potential patients who can benefit from immunotherapies.

摘要

目的

本研究构建并验证了一种机器学习模型,用于利用计算机断层扫描(CT)影像组学特征预测胰腺导管腺癌(PDAC)患者的CD8肿瘤浸润淋巴细胞表达水平。

材料与方法

在这项回顾性研究中,184例PDAC患者被随机分配到训练数据集(n = 137)和验证数据集(n = 47)。使用X-tile图将所有患者分为CD8 T细胞高表达组和低表达组。基于每位患者的术前CT图像,从感兴趣区域的分割中提取了总共1409个影像组学特征。应用LASSO算法降低数据维度并选择特征。使用由2017年1月至2017年12月期间收治的137例连续患者组成的训练集开发了极端梯度提升分类器(XGBoost)。该模型在2018年1月至2018年4月期间收治的47例连续患者中进行了验证。XGBoost分类器的性能由其判别能力、校准和临床实用性决定。

结果

X-tile程序确定的CD8 T细胞水平的截断值为18.69%。Kaplan-Meier分析表明,较高的CD8 T细胞水平与更好的总生存期相关(P = 0.001)。XGBoost分类器在训练集(曲线下面积[AUC],0.75;95%置信区间[CI]:0.67 - 0.83)和验证集(AUC,0.67;95% CI:0.51 - 0.83)中显示出良好的判别能力。此外,它还显示出良好的校准。训练集的灵敏度、特异性、准确性、阳性和阴性预测值分别为80.65%、60.00%、0.69、0.63和0.79,验证集的相应值分别为80.95%、57.69%、0.68、0.61和0.79。

结论

我们开发了一种基于CT的XGBoost分类器来推断PDAC患者CD8 T细胞的浸润水平。该方法可能有助于识别可能从免疫治疗中获益的潜在患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e2/8170309/b8cc3e205d15/fonc-11-671333-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验