Suppr超能文献

基于机器学习的 CT 影像组学:预测胰腺导管腺癌患者的肿瘤浸润淋巴细胞。

Machine Learning for Computed Tomography Radiomics: Prediction of Tumor-Infiltrating Lymphocytes in Patients With Pancreatic Ductal Adenocarcinoma.

机构信息

From the Departments of Radiology.

Pathology, Changhai Hospital, Navy Medical University, Shanghai, China.

出版信息

Pancreas. 2022 May 1;51(5):549-558. doi: 10.1097/MPA.0000000000002069. Epub 2022 Jul 24.

Abstract

OBJECTIVES

The aims of the study were to develop and validate a machine learning classifier for preoperative prediction of tumor-infiltrating lymphocytes (TILs) in patients with pancreatic ductal adenocarcinoma (PDAC).

METHODS

In this retrospective study of 183 PDAC patients who underwent multidetector computed tomography and surgical resection, CD4 + , CD8 + , and CD20 + expression was evaluated using immunohistochemistry, and TIL scores were calculated using the Cox regression model. The patients were divided into TIL-low and TIL-high groups. An extreme gradient boosting (XGBoost) classifier was developed using a training set consisting of 136 consecutive patients, and the model was validated in 47 consecutive patients. The discriminative ability, calibration, and clinical utility of the XGBoost classifier were evaluated.

RESULTS

The prediction model showed good discrimination in the training (area under the curve, 0.93; 95% confidence interval, 0.89-0.97) and validation (area under the curve, 0.79; 95% confidence interval, 0.65-0.92) sets with good calibration. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 0.93, 0.85, 0.90, 0.89, and 0.91, respectively, while those for the validation set were 0.63, 0.91, 0.77, 0.88, and 0.70, respectively.

CONCLUSIONS

The XGBoost-based model could predict PDAC TILs and may facilitate clinical decision making for immune therapy.

摘要

目的

本研究旨在开发和验证一种机器学习分类器,用于预测胰腺导管腺癌(PDAC)患者肿瘤浸润淋巴细胞(TILs)。

方法

本回顾性研究纳入了 183 例接受多排螺旋 CT 和手术切除的 PDAC 患者,采用免疫组织化学法评估 CD4+、CD8+和 CD20+的表达,并使用 Cox 回归模型计算 TIL 评分。根据 TIL 评分将患者分为 TIL 低组和 TIL 高组。采用训练集(由 136 例连续患者组成)建立极端梯度提升(XGBoost)分类器,并在 47 例连续患者中进行验证。评估 XGBoost 分类器的判别能力、校准度和临床实用性。

结果

在训练集(曲线下面积,0.93;95%置信区间,0.89-0.97)和验证集(曲线下面积,0.79;95%置信区间,0.65-0.92)中,预测模型均具有良好的判别能力,且校准度较好。训练集的敏感性、特异性、准确性、阳性预测值和阴性预测值分别为 0.93、0.85、0.90、0.89 和 0.91,验证集的分别为 0.63、0.91、0.77、0.88 和 0.70。

结论

基于 XGBoost 的模型可预测 PDAC 的 TILs,可能有助于免疫治疗的临床决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验