Suppr超能文献

基于治疗前CT的影像组学特征作为预测食管鳞癌中PD-L1表达和CD8+肿瘤浸润淋巴细胞的潜在影像生物标志物

Pretreatment CT-Based Radiomics Signature as a Potential Imaging Biomarker for Predicting the Expression of PD-L1 and CD8+TILs in ESCC.

作者信息

Wen Qiang, Yang Zhe, Zhu Jian, Qiu Qingtao, Dai Honghai, Feng Alei, Xing Ligang

机构信息

Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan 250021, People's Republic of China.

Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan 250117, People's Republic of China.

出版信息

Onco Targets Ther. 2020 Nov 20;13:12003-12013. doi: 10.2147/OTT.S261068. eCollection 2020.

Abstract

BACKGROUND

The present study constructed and validated models to predict PD-L1 and CD8+TILs expression levels in esophageal squamous cell carcinoma (ESCC) patients using radiomics features and clinical factors.

PATIENTS AND METHODS

This retrospective study randomly assigned 220 ESCC patients to a discovery dataset (n= 160) and validation dataset (n= 60). A total of 462 radiomics features were extracted from the segmentation of regions of interest (ROIs) based on pretreatment CT images of each patient. The LASSO algorithm was applied to reduce the dimensionality of the data and select features. A multivariable logistic regression analysis was adopted to build radiomics signatures. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive accuracy of these models.

RESULTS

There was no significant difference between the training and validation datasets for any clinical factors in patients with ESCC. The PD-L1 expression level correlated with the differentiation degree (= 0.011) and tumor stage (= 0.032). Smoking status (= 0.043) and differentiation degree (= 0.025) were associated with CD8+TILs expression levels. The radiomics signatures achieved good performance in predicting PD-L1 and CD8+TILs with AUCs= 0.784 and 0.764, respectively. The combined model showed a favorable predictive ability compared to radiomics signatures or clinical factors alone and improved the AUCs from 0.669 to 0.871 for PD-L1 and from 0.672 to 0.832 for CD8+TILs. These results were verified in the validation dataset with the AUCs of 0.817 and 0.795, respectively.

CONCLUSION

CT-based radiomics features have a potential value for classifying patients according to PD-L1 and CD8+TILs expression levels. The combination of clinical factors and radiomics signatures significantly improved the predictive performance in ESCC.

摘要

背景

本研究构建并验证了利用放射组学特征和临床因素预测食管鳞状细胞癌(ESCC)患者程序性死亡受体配体1(PD-L1)和CD8+肿瘤浸润淋巴细胞(TILs)表达水平的模型。

患者与方法

这项回顾性研究将220例ESCC患者随机分配到发现数据集(n = 160)和验证数据集(n = 60)。基于每位患者的治疗前CT图像,从感兴趣区域(ROI)分割中提取了总共462个放射组学特征。应用最小绝对收缩和选择算子(LASSO)算法进行数据降维和特征选择。采用多变量逻辑回归分析建立放射组学特征。进行受试者操作特征(ROC)曲线分析以评估这些模型的预测准确性。

结果

ESCC患者的任何临床因素在训练数据集和验证数据集之间均无显著差异。PD-L1表达水平与分化程度(P = 0.011)和肿瘤分期(P = 0.032)相关。吸烟状态(P = 0.043)和分化程度(P = 0.025)与CD8+TILs表达水平相关。放射组学特征在预测PD-L1和CD8+TILs方面表现良好,曲线下面积(AUC)分别为0.784和0.764。与单独的放射组学特征或临床因素相比,联合模型显示出良好的预测能力,将PD-L1的AUC从0.669提高到0.871,将CD8+TILs的AUC从0.672提高到0.832。这些结果在验证数据集中得到验证,AUC分别为0.817和0.795。

结论

基于CT的放射组学特征在根据PD-L1和CD8+TILs表达水平对患者进行分类方面具有潜在价值。临床因素与放射组学特征的结合显著提高了ESCC的预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验