Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
J Am Chem Soc. 2013 Jan 30;135(4):1358-68. doi: 10.1021/ja3084972. Epub 2013 Jan 22.
The proton chemical shift (CS) tensor is a sensitive probe of structure and hydrogen bonding. Highly accurate quantum-chemical protocols exist for computation of (1)H magnetic shieldings in the various contexts, making proton chemical shifts potentially a powerful predictor of structural and electronic properties. However, (1)H CS tensors are not yet widely used in protein structure calculation due to scarcity of experimental data. While isotropic proton shifts can be readily measured in proteins even in the solid state, determination of the (1)H chemical shift anisotropy (CSA) tensors remains challenging, particularly in molecules containing multiple proton sites. We present a method for site-resolved measurement of amide proton CSAs in fully protonated solids under magic angle spinning. The approach consists of three concomitant 3D experiments yielding spectra determined by either mainly (1)H CSA, mainly (1)H–(15)N dipolar, or combined (1)H CSA and (1)H–(15)N dipolar interactions. The anisotropic interactions are recoupled using RN-sequences of appropriate symmetry, such as R12(1)(4), and (15)N/(13)C isotropic CS dimensions are introduced via a short selective (1)H–(15)N cross-polarization step. Accurate (1)H chemical shift tensor parameters are extracted by simultaneous fit of the lineshapes recorded in the three spectra. An application of this method is presented for an 89-residue protein, U-(13)C,(15)N-CAP-Gly domain of dynactin. The CSA parameters determined from the triple fits correlate with the hydrogen-bonding distances, and the trends are in excellent agreement with the prior solution NMR results. This approach is generally suited for recording proton CSA parameters in various biological and organic systems, including protein assemblies and nucleic acids.
质子化学位移(CS)张量是结构和氢键的灵敏探针。存在高度精确的量子化学协议来计算各种情况下的(1)H 磁屏蔽,这使得质子化学位移有可能成为结构和电子性质的强大预测因子。然而,由于实验数据稀缺,质子 CS 张量尚未在蛋白质结构计算中广泛使用。虽然各向同性质子位移在蛋白质中甚至在固态下都可以很容易地测量,但确定(1)H 化学位移各向异性(CSA)张量仍然具有挑战性,特别是在包含多个质子位点的分子中。我们提出了一种在魔角旋转下完全质子化固体中酰胺质子 CSA 的位点分辨测量方法。该方法由三个同时进行的 3D 实验组成,产生由主要(1)H CSA、主要(1)H-(15)N 偶极子或组合(1)H CSA 和(1)H-(15)N 偶极子相互作用确定的光谱。各向异性相互作用通过适当对称的 RN 序列(例如 R12(1)(4))重新耦合,并且通过短的选择性(1)H-(15)N 交叉极化步骤引入(15)N/(13)C 各向同性 CS 尺寸。通过同时拟合在三个光谱中记录的线宽来提取准确的(1)H 化学位移张量参数。该方法的一个应用是针对 dynactin 的 U-(13)C,(15)N-CAP-Gly 结构域的 89 残基蛋白。三重拟合确定的 CSA 参数与氢键距离相关,并且趋势与之前的溶液 NMR 结果非常吻合。这种方法通常适用于记录各种生物和有机系统中的质子 CSA 参数,包括蛋白质组装体和核酸。