Suppr超能文献

纹状体时间编码的经验相关增强。

Experience-related enhancements in striatal temporal encoding.

机构信息

Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA.

Department of Neurology, University of Iowa, Iowa City, IA, USA.

出版信息

Eur J Neurosci. 2021 Aug;54(3):5063-5074. doi: 10.1111/ejn.15344. Epub 2021 Jun 29.

Abstract

Temporal control of action is key for a broad range of behaviors and is disrupted in human diseases such as Parkinson's disease and schizophrenia. A brain structure that is critical for temporal control is the dorsal striatum. Experience and learning can influence dorsal striatal neuronal activity, but it is unknown how these neurons change with experience in contexts which require precise temporal control of movement. We investigated this question by recording from medium spiny neurons (MSNs) via dorsal striatal microelectrode arrays in mice as they gained experience controlling their actions in time. We leveraged an interval timing task optimized for mice which required them to "switch" response ports after enough time had passed without receiving a reward. We report three main results. First, we found that time-related ramping activity and response-related activity increased with task experience. Second, temporal decoding by MSN ensembles improved with experience and was predominantly driven by time-related ramping activity. Finally, we found that a subset of MSNs had differential modulation on error trials. These findings enhance our understanding of dorsal striatal temporal processing by demonstrating how MSN ensembles can evolve with experience. Our results can be linked to temporal habituation and illuminate striatal flexibility during interval timing, which may be relevant for human disease.

摘要

动作的时间控制对于广泛的行为至关重要,并且在帕金森病和精神分裂症等人类疾病中受到干扰。对于时间控制至关重要的大脑结构是背侧纹状体。经验和学习可以影响背侧纹状体神经元的活动,但尚不清楚这些神经元在需要精确运动时间控制的情况下,随着经验的变化而如何变化。我们通过在小鼠进行时间控制的操作时,通过背侧纹状体微电极阵列记录中型多棘神经元 (MSN) ,从而研究了这个问题。我们利用了一个针对小鼠的间隔计时任务,该任务要求它们在足够的时间过去而没有收到奖励后“切换”响应端口。我们报告了三个主要结果。首先,我们发现与时间相关的斜坡活动和与响应相关的活动随着任务经验的增加而增加。其次,MSN 集合的时间解码随着经验的提高而得到改善,主要是由与时间相关的斜坡活动驱动的。最后,我们发现一组 MSN 在错误试验中具有不同的调制。这些发现通过证明 MSN 集合如何随着经验的变化而进化,增强了我们对背侧纹状体时间处理的理解。我们的结果可以与时间习惯化相关联,并阐明间隔计时期间纹状体的灵活性,这可能与人类疾病有关。

相似文献

1
Experience-related enhancements in striatal temporal encoding.
Eur J Neurosci. 2021 Aug;54(3):5063-5074. doi: 10.1111/ejn.15344. Epub 2021 Jun 29.
2
Rodent Medial Frontal Control of Temporal Processing in the Dorsomedial Striatum.
J Neurosci. 2017 Sep 6;37(36):8718-8733. doi: 10.1523/JNEUROSCI.1376-17.2017. Epub 2017 Aug 8.
3
Coordinated Ramping of Dorsal Striatal Pathways preceding Food Approach and Consumption.
J Neurosci. 2018 Apr 4;38(14):3547-3558. doi: 10.1523/JNEUROSCI.2693-17.2018. Epub 2018 Mar 9.
4
5
Optogenetic insights into striatal function and behavior.
Behav Brain Res. 2013 Oct 15;255:44-54. doi: 10.1016/j.bbr.2013.04.018. Epub 2013 Apr 28.
6
Temporal correlations among functionally specialized striatal neural ensembles in reward-conditioned mice.
J Neurophysiol. 2016 Mar;115(3):1521-32. doi: 10.1152/jn.01037.2015. Epub 2016 Jan 13.
7
Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum.
J Neurophysiol. 2017 Mar 1;117(3):987-999. doi: 10.1152/jn.00683.2016. Epub 2016 Dec 7.
8
Selective Role of RGS9-2 in Regulating Retrograde Synaptic Signaling of Indirect Pathway Medium Spiny Neurons in Dorsal Striatum.
J Neurosci. 2018 Aug 8;38(32):7120-7131. doi: 10.1523/JNEUROSCI.0493-18.2018. Epub 2018 Jul 13.
9
The Fast Spiking Subpopulation of Striatal Neurons Coding for Temporal Cognition of Movements.
Front Cell Neurosci. 2017 Dec 15;11:406. doi: 10.3389/fncel.2017.00406. eCollection 2017.
10
Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease.
J Neurosci. 2008 May 21;28(21):5504-12. doi: 10.1523/JNEUROSCI.5493-07.2008.

引用本文的文献

1
Amphetamine increases timing variability by degrading prefrontal temporal encoding.
Neuropharmacology. 2025 Sep 1;275:110486. doi: 10.1016/j.neuropharm.2025.110486. Epub 2025 May 3.
2
Complementary cognitive roles for D2-MSNs and D1-MSNs during interval timing.
Elife. 2025 Jan 15;13:RP96287. doi: 10.7554/eLife.96287.
3
4
Sub-second and multi-second dopamine dynamics underlie variability in human time perception.
medRxiv. 2024 Feb 9:2024.02.09.24302276. doi: 10.1101/2024.02.09.24302276.
6
Parallel processes of temporal control in the supplementary motor area and the frontoparietal circuit.
Psych J. 2024 Jun;13(3):355-368. doi: 10.1002/pchj.701. Epub 2023 Dec 17.
8
Glycolysis-enhancing α-adrenergic antagonists modify cognitive symptoms related to Parkinson's disease.
NPJ Parkinsons Dis. 2023 Mar 2;9(1):32. doi: 10.1038/s41531-023-00477-1.
10
Mice expressing P301S mutant human tau have deficits in interval timing.
Behav Brain Res. 2022 Aug 26;432:113967. doi: 10.1016/j.bbr.2022.113967. Epub 2022 Jun 17.

本文引用的文献

1
Temporal Learning Among Prefrontal and Striatal Ensembles.
Cereb Cortex Commun. 2020 Aug 29;1(1):tgaa058. doi: 10.1093/texcom/tgaa058. eCollection 2020.
2
Timing variability and midfrontal ~4 Hz rhythms correlate with cognition in Parkinson's disease.
NPJ Parkinsons Dis. 2021 Feb 15;7(1):14. doi: 10.1038/s41531-021-00158-x.
3
Neural Sequences as an Optimal Dynamical Regime for the Readout of Time.
Neuron. 2020 Nov 25;108(4):651-658.e5. doi: 10.1016/j.neuron.2020.08.020. Epub 2020 Sep 17.
4
Corticostriatal stimulation compensates for medial frontal inactivation during interval timing.
Sci Rep. 2019 Oct 7;9(1):14371. doi: 10.1038/s41598-019-50975-7.
6
Comparison of Actions between L-DOPA and Different Dopamine Agonists in Striatal DA-Depleted Microcircuits In Vitro: Pre-Clinical Insights.
Neuroscience. 2019 Jul 1;410:76-96. doi: 10.1016/j.neuroscience.2019.04.058. Epub 2019 May 9.
7
Synchronized activation of striatal direct and indirect pathways underlies the behavior in unilateral dopamine-depleted mice.
Eur J Neurosci. 2019 Jun;49(11):1512-1528. doi: 10.1111/ejn.14344. Epub 2019 Jan 30.
8
The Neural Basis of Timing: Distributed Mechanisms for Diverse Functions.
Neuron. 2018 May 16;98(4):687-705. doi: 10.1016/j.neuron.2018.03.045.
9
Flexible timing by temporal scaling of cortical responses.
Nat Neurosci. 2018 Jan;21(1):102-110. doi: 10.1038/s41593-017-0028-6. Epub 2017 Dec 4.
10
Rodent Medial Frontal Control of Temporal Processing in the Dorsomedial Striatum.
J Neurosci. 2017 Sep 6;37(36):8718-8733. doi: 10.1523/JNEUROSCI.1376-17.2017. Epub 2017 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验