Suppr超能文献

神经序列作为读取时间的最优动力学状态。

Neural Sequences as an Optimal Dynamical Regime for the Readout of Time.

机构信息

Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Neuron. 2020 Nov 25;108(4):651-658.e5. doi: 10.1016/j.neuron.2020.08.020. Epub 2020 Sep 17.

Abstract

Converging evidence suggests that the brain encodes time through dynamically changing patterns of neural activity, including neural sequences, ramping activity, and complex spatiotemporal dynamics. However, the potential computational significance and advantage of these different regimes have remained unaddressed. We combined large-scale recordings and modeling to compare population dynamics between premotor cortex and striatum in mice performing a two-interval timing task. Conventional decoders revealed that the dynamics within each area encoded time equally well; however, the dynamics in striatum exhibited a higher degree of sequentiality. Analysis of premotor and striatal dynamics, together with a large set of simulated prototypical dynamical regimes, revealed that regimes with higher sequentiality allowed a biologically constrained artificial downstream network to better read out time. These results suggest that, although different strategies exist for encoding time in the brain, neural sequences represent an ideal and flexible dynamical regime for enabling downstream areas to read out this information.

摘要

越来越多的证据表明,大脑通过动态变化的神经活动模式来编码时间,包括神经序列、斜率活动和复杂的时空动力学。然而,这些不同状态的潜在计算意义和优势仍未得到解决。我们结合了大规模的记录和建模,比较了在执行双时距任务的小鼠的运动前皮层和纹状体之间的群体动力学。传统解码器显示,每个区域内的动力学对时间的编码同样好;然而,纹状体的动力学表现出更高的序列性。对运动前皮层和纹状体动力学的分析,以及一大组模拟的典型动力学状态,表明具有更高序列性的状态允许具有生物约束的人工下游网络更好地读取时间。这些结果表明,尽管大脑中存在不同的编码时间策略,但神经序列代表了一种理想和灵活的动力学状态,使下游区域能够读取此信息。

相似文献

1
Neural Sequences as an Optimal Dynamical Regime for the Readout of Time.
Neuron. 2020 Nov 25;108(4):651-658.e5. doi: 10.1016/j.neuron.2020.08.020. Epub 2020 Sep 17.
3
An auditory cortical-striatal circuit supports sound-triggered timing to predict future events.
PLoS Biol. 2025 Jun 2;23(6):e3003209. doi: 10.1371/journal.pbio.3003209. eCollection 2025 Jun.
4
Transitions in dynamical regime and neural mode underlie perceptual decision-making.
bioRxiv. 2025 Apr 7:2023.10.15.562427. doi: 10.1101/2023.10.15.562427.
5
Encoding time in neural dynamic regimes with distinct computational tradeoffs.
PLoS Comput Biol. 2022 Mar 3;18(3):e1009271. doi: 10.1371/journal.pcbi.1009271. eCollection 2022 Mar.
7
Complementary cognitive roles for D2-MSNs and D1-MSNs during interval timing.
Elife. 2025 Jan 15;13:RP96287. doi: 10.7554/eLife.96287.
8
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
9
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
10
Parvalbumin neurons and cortical coding of dynamic stimuli: a network model.
J Neurophysiol. 2025 Jul 1;134(1):53-66. doi: 10.1152/jn.00283.2024. Epub 2025 May 13.

引用本文的文献

2
Balanced state of networks of winner-take-all units.
PLoS Comput Biol. 2025 Jun 11;21(6):e1013081. doi: 10.1371/journal.pcbi.1013081. eCollection 2025 Jun.
3
Hippocampal sequences represent working memory and implicit timing.
bioRxiv. 2025 Mar 17:2025.03.17.643736. doi: 10.1101/2025.03.17.643736.
4
Neural signatures of temporal anticipation in human cortex represent event probability density.
Nat Commun. 2025 Mar 16;16(1):2602. doi: 10.1038/s41467-025-57813-7.
5
Medium Spiny Neurons Mediate Timing Perception in Coordination with Prefrontal Neurons in Primates.
Adv Sci (Weinh). 2025 Apr;12(16):e2412963. doi: 10.1002/advs.202412963. Epub 2025 Feb 11.
6
Temporal pavlovian conditioning of a model spiking neural network for discrimination sequences of short time intervals.
J Comput Neurosci. 2025 Mar;53(1):163-179. doi: 10.1007/s10827-025-00896-4. Epub 2025 Feb 1.
8
Neuronal Sequences and dynamic coding of water-sucrose categorization in rat gustatory cortices.
iScience. 2024 Oct 30;27(12):111287. doi: 10.1016/j.isci.2024.111287. eCollection 2024 Dec 20.
9
Preconfigured cortico-thalamic neural dynamics constrain movement-associated thalamic activity.
Nat Commun. 2024 Nov 24;15(1):10185. doi: 10.1038/s41467-024-54742-9.
10
Dynamical mechanisms of how an RNN keeps a beat, uncovered with a low-dimensional reduced model.
Sci Rep. 2024 Nov 2;14(1):26388. doi: 10.1038/s41598-024-77849-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验