Suppr超能文献

草酰琥珀酸脱羧酶利用电子空穴跳跃进行催化。

Oxalate decarboxylase uses electron hole hopping for catalysis.

机构信息

Department of Chemistry, University of Florida, Gainesville, Florida, USA.

Department of Chemistry, Duke University, Durham, North Carolina, USA.

出版信息

J Biol Chem. 2021 Jul;297(1):100857. doi: 10.1016/j.jbc.2021.100857. Epub 2021 Jun 5.

Abstract

The hexameric low-pH stress response enzyme oxalate decarboxylase catalyzes the decarboxylation of the oxalate mono-anion in the soil bacterium Bacillus subtilis. A single protein subunit contains two Mn-binding cupin domains, and catalysis depends on Mn(III) at the N-terminal site. The present study suggests a mechanistic function for the C-terminal Mn as an electron hole donor for the N-terminal Mn. The resulting spatial separation of the radical intermediates directs the chemistry toward decarboxylation of the substrate. A π-stacked tryptophan pair (W96/W274) links two neighboring protein subunits together, thus reducing the Mn-to-Mn distance from 25.9 Å (intrasubunit) to 21.5 Å (intersubunit). Here, we used theoretical analysis of electron hole-hopping paths through redox-active sites in the enzyme combined with site-directed mutagenesis and X-ray crystallography to demonstrate that this tryptophan pair supports effective electron hole hopping between the C-terminal Mn of one subunit and the N-terminal Mn of the other subunit through two short hops of ∼8.5 Å. Replacement of W96, W274, or both with phenylalanine led to a large reduction in catalytic efficiency, whereas replacement with tyrosine led to recovery of most of this activity. W96F and W96Y mutants share the wildtype tertiary structure. Two additional hole-hopping networks were identified leading from the Mn ions to the protein surface, potentially protecting the enzyme from high Mn oxidation states during turnover. Our findings strongly suggest that multistep hole-hopping transport between the two Mn ions is required for enzymatic function, adding to the growing examples of proteins that employ aromatic residues as hopping stations.

摘要

六聚体低 pH 应激反应酶草酸盐脱羧酶催化土壤细菌枯草芽孢杆菌中草酸盐单阴离子的脱羧作用。单个蛋白亚基包含两个 Mn 结合杯蛋白结构域,并且催化依赖于 N 端位点的 Mn(III)。本研究表明 C 端 Mn 具有作为 N 端 Mn 的电子空穴供体的机制功能。自由基中间体的这种空间分离将化学导向底物的脱羧作用。一个π堆积色氨酸对(W96/W274)将两个相邻的蛋白亚基连接在一起,从而将 Mn-Mn 距离从 25.9 Å(亚基内)缩短至 21.5 Å(亚基间)。在这里,我们使用酶中氧化还原活性位点的电子空穴跳跃路径的理论分析结合定点突变和 X 射线晶体学,证明该色氨酸对支持通过两个约 8.5 Å 的短跳跃,在一个亚基的 C 端 Mn 和另一个亚基的 N 端 Mn 之间进行有效的电子空穴跳跃。用苯丙氨酸替代 W96、W274 或两者都会导致催化效率大幅降低,而用酪氨酸替代则会恢复大部分活性。W96F 和 W96Y 突变体具有野生型三级结构。还确定了另外两个从 Mn 离子到蛋白质表面的空穴跳跃网络,这可能在周转过程中保护酶免受高 Mn 氧化态的影响。我们的发现强烈表明,两个 Mn 离子之间的多步空穴跳跃传输是酶功能所必需的,这增加了越来越多的利用芳香族残基作为跳跃站的蛋白质的例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/216c/8254039/4cdbc3f6688d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验