Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA.
Molecules. 2024 Sep 17;29(18):4414. doi: 10.3390/molecules29184414.
Oxalate decarboxylase is an Mn- and O-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from where it is stress-induced under low pH conditions. Current mechanistic schemes assume a monodentate binding mode of the substrate to the N-terminal active site Mn ion to make space for a presumed O molecule, despite the fact that oxalate generally prefers to bind bidentate to Mn. We report on X-band C-electron nuclear double resonance (ENDOR) experiments on C-labeled oxalate bound to the active-site Mn(II) in wild-type oxalate decarboxylase at high pH, the catalytically impaired W96F mutant enzyme at low pH, and Mn(II) in aqueous solution. The ENDOR spectra of these samples are practically identical, which shows that the substrate binds bidentate (κ, κ') to the active site Mn(II) ion. Domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) calculations of the expected C hyperfine coupling constants for bidentate bound oxalate predict ENDOR spectra in good agreement with the experiment, supporting bidentate bound substrate. Geometry optimization of a substrate-bound minimal active site model by density functional theory shows two possible substrate coordination geometries, bidentate and monodentate. The bidentate structure is energetically preferred by ~4.7 kcal/mol. Our results revise a long-standing hypothesis regarding substrate binding in the enzyme and suggest that dioxygen does not bind to the active site Mn ion after substrate binds. The results are in agreement with our recent mechanistic hypothesis of substrate activation via a long-range electron transfer process involving the C-terminal Mn ion.
草酰脱羧酶是双杯蛋白超家族中的一种 Mn 和 O 依赖性酶,可催化草酸单阴离子的氧化还原非均相歧化,形成二氧化碳和甲酸盐。其研究最深入的同工酶来自 ,在低 pH 条件下,它是应激诱导的。目前的机制方案假设底物与 N 端活性位点 Mn 离子以单齿配位模式结合,为假定的 O 分子腾出空间,尽管事实上草酸通常更喜欢与 Mn 形成双齿配位。我们报告了在高 pH 下,野生型草酰脱羧酶的活性位点 Mn(II)上结合 C 标记的草酸盐的 X 波段 C 电子核双共振(ENDOR)实验,在低 pH 下,催化受损的 W96F 突变酶和水溶液中的 Mn(II)。这些样品的 ENDOR 光谱几乎相同,这表明底物以双齿(κ,κ')与活性位点 Mn(II)离子结合。基于域的局部对自然轨道耦合簇单双(DLPNO-CCSD)计算预期的双齿结合草酸盐的 C 超精细耦合常数的计算表明,与实验吻合良好,支持双齿结合的底物。通过密度泛函理论对含底物的最小活性位点模型进行几何优化,显示出两种可能的底物配位几何结构,双齿和单齿。双齿结构在能量上优先约 4.7 kcal/mol。我们的结果修正了关于酶中底物结合的长期假设,并表明在底物结合后,氧分子不会与活性位点 Mn 离子结合。这些结果与我们最近提出的通过涉及 C 端 Mn 离子的远程电子转移过程激活底物的机制假设一致。