Suppr超能文献

利用荧光共振能量转移技术探测离子通道大分子相互作用。

Probing ion channel macromolecular interactions using fluorescence resonance energy transfer.

机构信息

Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States.

Barnard College, New York, NY, United States.

出版信息

Methods Enzymol. 2021;653:319-347. doi: 10.1016/bs.mie.2021.01.047. Epub 2021 Mar 15.

Abstract

Ion channels are macromolecular complexes whose functions are exquisitely tuned by interacting proteins. Fluorescence resonance energy transfer (FRET) is a powerful methodology that is adept at quantifying ion channel protein-protein interactions in living cells. For FRET experiments, the interacting partners are tagged with appropriate donor and acceptor fluorescent proteins. If the fluorescently-labeled molecules are in close proximity, then photoexcitation of the donor results in non-radiative energy transfer to the acceptor, and subsequent fluorescence emission of the acceptor. The stoichiometry of ion channel interactions and their relative binding affinities can be deduced by quantifying both the FRET efficiency and the total number of donors and acceptors in a given cell. In this chapter, we discuss general considerations for FRET analysis of biological interactions, various strategies for estimating FRET efficiencies, and detailed protocols for construction of binding curves and determination of stoichiometry. We focus on implementation of FRET assays using a flow cytometer given its amenability for high-throughput data acquisition, enhanced accessibility, and robust analysis. This versatile methodology permits mechanistic dissection of dynamic changes in ion channel interactions.

摘要

离子通道是大分子复合物,其功能通过相互作用的蛋白质进行精细调节。荧光共振能量转移(FRET)是一种强大的方法,可以在活细胞中定量测量离子通道蛋白-蛋白相互作用。对于 FRET 实验,相互作用的伴侣被标记上适当的供体和受体荧光蛋白。如果荧光标记的分子非常接近,那么供体的光激发会导致非辐射能量转移到受体,随后受体发出荧光。通过定量给定细胞中 FRET 的效率和供体和受体的总数,可以推断离子通道相互作用的化学计量及其相对结合亲和力。在这一章中,我们讨论了生物相互作用的 FRET 分析的一般考虑因素、估计 FRET 效率的各种策略,以及构建结合曲线和确定化学计量的详细方案。我们专注于使用流式细胞仪实施 FRET 测定,因为它易于进行高通量数据采集、增强的可及性和稳健的分析。这种多功能的方法允许对离子通道相互作用的动态变化进行机制剖析。

相似文献

1
Probing ion channel macromolecular interactions using fluorescence resonance energy transfer.
Methods Enzymol. 2021;653:319-347. doi: 10.1016/bs.mie.2021.01.047. Epub 2021 Mar 15.
2
Fluorescence resonance energy transfer-based stoichiometry in living cells.
Biophys J. 2002 Dec;83(6):3652-64. doi: 10.1016/S0006-3495(02)75365-4.
4
Anomalous surplus energy transfer observed with multiple FRET acceptors.
PLoS One. 2009 Nov 25;4(11):e8031. doi: 10.1371/journal.pone.0008031.
6
Optical methods in the study of protein-protein interactions.
Adv Exp Med Biol. 2010;674:33-42. doi: 10.1007/978-1-4419-6066-5_4.
7
Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement.
J Microsc. 2018 Nov;272(2):145-150. doi: 10.1111/jmi.12755. Epub 2018 Sep 14.
8
Detecting stoichiometry of macromolecular complexes in live cells using FRET.
Nat Commun. 2016 Dec 6;7:13709. doi: 10.1038/ncomms13709.
9
Quantifying macromolecular interactions in living cells using FRET two-hybrid assays.
Nat Protoc. 2016 Dec;11(12):2470-2498. doi: 10.1038/nprot.2016.128. Epub 2016 Nov 10.

引用本文的文献

2
Arrhythmia-associated calmodulin variants interact with KCNQ1 to confer aberrant membrane trafficking and function.
PNAS Nexus. 2023 Oct 14;2(11):pgad335. doi: 10.1093/pnasnexus/pgad335. eCollection 2023 Nov.
4
Bestrophin-2 and glutamine synthetase form a complex for glutamate release.
Nature. 2022 Nov;611(7934):180-187. doi: 10.1038/s41586-022-05373-x. Epub 2022 Oct 26.
5
Elementary mechanisms of calmodulin regulation of Na1.5 producing divergent arrhythmogenic phenotypes.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2025085118.

本文引用的文献

1
Adrenergic Ca1.2 Activation via Rad Phosphorylation Converges at α I-II Loop.
Circ Res. 2021 Jan 8;128(1):76-88. doi: 10.1161/CIRCRESAHA.120.317839. Epub 2020 Oct 22.
2
Mechanism of adrenergic Ca1.2 stimulation revealed by proximity proteomics.
Nature. 2020 Jan;577(7792):695-700. doi: 10.1038/s41586-020-1947-z. Epub 2020 Jan 22.
3
FRET as a biomolecular research tool - understanding its potential while avoiding pitfalls.
Nat Methods. 2019 Sep;16(9):815-829. doi: 10.1038/s41592-019-0530-8. Epub 2019 Aug 30.
5
Genome-wide CRISPR-Cas9 screening in mammalian cells.
Methods. 2019 Jul 15;164-165:29-35. doi: 10.1016/j.ymeth.2019.04.015. Epub 2019 Apr 26.
6
Potassium channel selectivity filter dynamics revealed by single-molecule FRET.
Nat Chem Biol. 2019 Apr;15(4):377-383. doi: 10.1038/s41589-019-0240-7. Epub 2019 Mar 4.
7
Influence of Fluorescent Protein Maturation on FRET Measurements in Living Cells.
ACS Sens. 2018 Sep 28;3(9):1735-1742. doi: 10.1021/acssensors.8b00473. Epub 2018 Sep 12.
8
Visualizing and discovering cellular structures with super-resolution microscopy.
Science. 2018 Aug 31;361(6405):880-887. doi: 10.1126/science.aau1044. Epub 2018 Aug 30.
9
Channelopathies as Causes of Sudden Cardiac Death.
Card Electrophysiol Clin. 2017 Dec;9(4):537-549. doi: 10.1016/j.ccep.2017.07.005.
10
Flow Cytometric FRET Analysis of Protein Interactions.
Methods Mol Biol. 2018;1678:393-419. doi: 10.1007/978-1-4939-7346-0_17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验