Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Faculty of Science, University of Basel, Basel, Switzerland.
Nat Commun. 2021 Jun 7;12(1):3388. doi: 10.1038/s41467-021-23572-4.
Wearable smart electronic devices, such as smart watches, are generally equipped with green-light-emitting diodes, which are used for photoplethysmography to monitor a panoply of physical health parameters. Here, we present a traceless, green-light-operated, smart-watch-controlled mammalian gene switch (Glow Control), composed of an engineered membrane-tethered green-light-sensitive cobalamin-binding domain of Thermus thermophilus (TtCBD) CarH protein in combination with a synthetic cytosolic TtCBD-transactivator fusion protein, which manage translocation of TtCBD-transactivator into the nucleus to trigger expression of transgenes upon illumination. We show that Apple-Watch-programmed percutaneous remote control of implanted Glow-controlled engineered human cells can effectively treat experimental type-2 diabetes by producing and releasing human glucagon-like peptide-1 on demand. Directly interfacing wearable smart electronic devices with therapeutic gene expression will advance next-generation personalized therapies by linking biopharmaceutical interventions to the internet of things.
可穿戴智能电子设备,如智能手表,通常配备有绿光发光二极管,用于光电容积描记法来监测各种身体健康参数。在这里,我们提出了一种无痕的、绿光操作的、由智能手表控制的哺乳动物基因开关(Glow Control),它由一种经过工程改造的膜结合的 Thermus thermophilus(TtCBD)CarH 蛋白的绿光敏感钴胺素结合域与一种合成的胞质 TtCBD-转录激活因子融合蛋白组成,可管理 TtCBD-转录激活因子向细胞核的易位,以在光照下触发转基因的表达。我们表明,通过按需产生和释放人胰高血糖素样肽-1,Apple Watch 编程的经皮远程控制植入的 Glow 控制的工程化人类细胞可以有效地治疗 2 型糖尿病。通过将生物制药干预与物联网直接连接,可穿戴智能电子设备与治疗性基因表达的直接接口将推进下一代个性化治疗。