Suppr超能文献

深度学习提高基于质谱的免疫肽组学的灵敏度。

Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics.

机构信息

Computational Mass Spectrometry, Technical University of Munich (TUM), Freising, Germany.

Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.

出版信息

Nat Commun. 2021 Jun 7;12(1):3346. doi: 10.1038/s41467-021-23713-9.

Abstract

Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and analyzed >300,000 peptides by multi-modal LC-MS/MS within the ProteomeTools project representing HLA class I & II ligands and products of the proteases AspN and LysN. The resulting data enabled training of a single model using the deep learning framework Prosit, allowing the accurate prediction of fragment ion spectra for tryptic and non-tryptic peptides. Applying Prosit demonstrates that the identification of HLA peptides can be improved up to 7-fold, that 87% of the proposed proteasomally spliced HLA peptides may be incorrect and that dozens of additional immunogenic neo-epitopes can be identified from patient tumors in published data. Together, the provided peptides, spectra and computational tools substantially expand the analytical depth of immunopeptidomics workflows.

摘要

通过质谱(MS)对人类白细胞抗原(HLA)结合配体组进行特征分析,为开发免疫肿瘤学的疫苗和药物带来了巨大的希望。然而,非胰蛋白酶肽的鉴定仍然存在着巨大的计算挑战。为了解决这些问题,我们在 ProteomeTools 项目中合成并分析了超过 30 万个肽段,这些肽段代表了 HLA Ⅰ类和Ⅱ类配体以及 AspN 和 LysN 蛋白酶产物。由此产生的数据使我们能够使用深度学习框架 Prosit 训练一个单一的模型,从而可以准确预测胰蛋白酶和非胰蛋白酶肽的片段离子谱。Prosit 的应用表明,HLA 肽的鉴定可以提高 7 倍,87%的拟蛋白酶切 HLA 肽可能是不正确的,并且可以从已发表数据中的患者肿瘤中鉴定出数十个额外的免疫原性新表位。总之,提供的肽段、谱和计算工具极大地扩展了免疫肽组学工作流程的分析深度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/154d/8184761/cb8af1b7ad8f/41467_2021_23713_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验