Suppr超能文献

基于数据非依赖采集质谱的免疫肽组学生物信息学流程的基准测试。

Benchmarking Bioinformatics Pipelines in Data-Independent Acquisition Mass Spectrometry for Immunopeptidomics.

机构信息

Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.

Evaxion Biotech, Copenhagen, Denmark.

出版信息

Mol Cell Proteomics. 2023 Apr;22(4):100515. doi: 10.1016/j.mcpro.2023.100515. Epub 2023 Feb 14.

Abstract

Immunopeptidomes are the peptide repertoires bound by the molecules encoded by the major histocompatibility complex [human leukocyte antigen (HLA) in humans]. These HLA-peptide complexes are presented on the cell surface for immune T-cell recognition. Immunopeptidomics denotes the utilization of tandem mass spectrometry to identify and quantify peptides bound to HLA molecules. Data-independent acquisition (DIA) has emerged as a powerful strategy for quantitative proteomics and deep proteome-wide identification; however, DIA application to immunopeptidomics analyses has so far seen limited use. Further, of the many DIA data processing tools currently available, there is no consensus in the immunopeptidomics community on the most appropriate pipeline(s) for in-depth and accurate HLA peptide identification. Herein, we benchmarked four commonly used spectral library-based DIA pipelines developed for proteomics applications (Skyline, Spectronaut, DIA-NN, and PEAKS) for their ability to perform immunopeptidome quantification. We validated and assessed the capability of each tool to identify and quantify HLA-bound peptides. Generally, DIA-NN and PEAKS provided higher immunopeptidome coverage with more reproducible results. Skyline and Spectronaut conferred more accurate peptide identification with lower experimental false-positive rates. All tools demonstrated reasonable correlations in quantifying precursors of HLA-bound peptides. Our benchmarking study suggests a combined strategy of applying at least two complementary DIA software tools to achieve the greatest degree of confidence and in-depth coverage of immunopeptidome data.

摘要

免疫肽组学是由主要组织相容性复合体[人类白细胞抗原(HLA)]编码的分子结合的肽库。这些 HLA-肽复合物在细胞表面呈现,供免疫 T 细胞识别。免疫肽组学是指利用串联质谱鉴定和定量与 HLA 分子结合的肽。数据非依赖性采集(DIA)已成为定量蛋白质组学和深度蛋白质组鉴定的强大策略;然而,DIA 应用于免疫肽组学分析的应用目前还很有限。此外,在目前可用的许多 DIA 数据分析工具中,免疫肽组学领域尚未就最适合深度和准确 HLA 肽鉴定的管道达成共识。在此,我们对四个常用于蛋白质组学应用的基于光谱库的常用 DIA 管道(Skyline、Spectronaut、DIA-NN 和 PEAKS)进行了基准测试,以评估它们进行免疫肽组定量的能力。我们验证和评估了每种工具识别和定量 HLA 结合肽的能力。通常,DIA-NN 和 PEAKS 提供了更高的免疫肽组覆盖率,结果更具可重复性。Skyline 和 Spectronaut 提供了更准确的肽鉴定,实验假阳性率更低。所有工具在定量 HLA 结合肽的前体方面都表现出了合理的相关性。我们的基准测试研究表明,采用至少两种互补的 DIA 软件工具的组合策略,可以实现对免疫肽组数据的最大置信度和深度覆盖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6786/10060114/2e7b1e6a8e50/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验