Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Methods Mol Biol. 2024;2758:457-483. doi: 10.1007/978-1-0716-3646-6_25.
Liquid chromatography-coupled mass spectrometry (LC-MS/MS) is the primary method to obtain direct evidence for the presentation of disease- or patient-specific human leukocyte antigen (HLA). However, compared to the analysis of tryptic peptides in proteomics, the analysis of HLA peptides still poses computational and statistical challenges. Recently, fragment ion intensity-based matching scores assessing the similarity between predicted and observed spectra were shown to substantially increase the number of confidently identified peptides, particularly in use cases where non-tryptic peptides are analyzed. In this chapter, we describe in detail three procedures on how to benefit from state-of-the-art deep learning models to analyze and validate single spectra, single measurements, and multiple measurements in mass spectrometry-based immunopeptidomics. For this, we explain how to use the Universal Spectrum Explorer (USE), online Oktoberfest, and offline Oktoberfest. For intensity-based scoring, Oktoberfest uses fragment ion intensity and retention time predictions from the deep learning framework Prosit, a deep neural network trained on a very large number of synthetic peptides and tandem mass spectra generated within the ProteomeTools project. The examples shown highlight how deep learning-assisted analysis can increase the number of identified HLA peptides, facilitate the discovery of confidently identified neo-epitopes, or provide assistance in the assessment of the presence of cryptic peptides, such as spliced peptides.
液相色谱-串联质谱(LC-MS/MS)是获得疾病或患者特异性人类白细胞抗原(HLA)表现的直接证据的主要方法。然而,与蛋白质组学中胰蛋白酶肽的分析相比,HLA 肽的分析仍然存在计算和统计方面的挑战。最近,基于片段离子强度的匹配分数评估预测和观察到的光谱之间的相似性,被证明可以大大增加被确认的肽的数量,特别是在分析非胰蛋白酶肽的情况下。在本章中,我们详细描述了如何利用最先进的深度学习模型来分析和验证基于质谱的免疫肽组学中的单个光谱、单个测量值和多个测量值的三种方法。为此,我们解释了如何使用通用光谱浏览器(USE)、在线 Oktoberfest 和离线 Oktoberfest。对于基于强度的评分,Oktoberfest 使用来自 Prosit 的片段离子强度和保留时间预测,Prosit 是一个基于大量合成肽和在 ProteomeTools 项目中生成的串联质谱的深度学习框架训练的深度神经网络。所展示的例子强调了深度学习辅助分析如何增加鉴定出的 HLA 肽的数量,促进新表位的鉴定,或提供对隐匿肽(如剪接肽)存在的评估的帮助。