Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel, Haifa, Israel.
Cardiology Department, Rambam Health Care Campus, Haifa, Israel.
JCI Insight. 2021 Jun 8;6(11):e147470. doi: 10.1172/jci.insight.147470.
Abnormal action potential (AP) properties, as occurs in long or short QT syndromes (LQTS and SQTS, respectively), can cause life-threatening arrhythmias. Optogenetics strategies, utilizing light-sensitive proteins, have emerged as experimental platforms for cardiac pacing, resynchronization, and defibrillation. We tested the hypothesis that similar optogenetic tools can modulate the cardiomyocyte's AP properties, as a potentially novel antiarrhythmic strategy. Healthy control and LQTS/SQTS patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were transduced to express the light-sensitive cationic channel channelrhodopsin-2 (ChR2) or the anionic-selective opsin, ACR2. Detailed patch-clamp, confocal-microscopy, and optical mapping studies evaluated the ability of spatiotemporally defined optogenetic protocols to modulate AP properties and prevent arrhythmogenesis in the hiPSC-CMs cell/tissue models. Depending on illumination timing, light-induced ChR2 activation induced robust prolongation or mild shortening of AP duration (APD), while ACR2 activation allowed effective APD shortening. Fine-tuning these approaches allowed for the normalization of pathological AP properties and suppression of arrhythmogenicity in the LQTS/SQTS hiPSC-CM cellular models. We next established a SQTS-hiPSC-CMs-based tissue model of reentrant-arrhythmias using optogenetic cross-field stimulation. An APD-modulating optogenetic protocol was then designed to dynamically prolong APD of the propagating wavefront, completely preventing arrhythmogenesis in this model. This work highlights the potential of optogenetics in studying repolarization abnormalities and in developing novel antiarrhythmic therapies.
异常动作电位 (AP) 特性,如长 QT 综合征 (LQTS) 和短 QT 综合征 (SQTS) 中发生的特性,可导致危及生命的心律失常。光遗传学策略利用光敏感蛋白,已成为心脏起搏、再同步和除颤的实验平台。我们检验了这样一个假设,即类似的光遗传学工具可以调节心肌细胞的 AP 特性,作为一种潜在的新型抗心律失常策略。我们将健康对照和 LQTS/SQTS 患者特异性人诱导多能干细胞衍生的心肌细胞 (hiPSC-CMs) 转导表达光敏阳离子通道通道视紫红质-2 (ChR2) 或阴离子选择性视蛋白 ACR2。详细的膜片钳、共聚焦显微镜和光学映射研究评估了时空定义的光遗传学方案调节 AP 特性和预防 hiPSC-CMs 细胞/组织模型心律失常发生的能力。根据光照时间,光诱导的 ChR2 激活可引起 AP 持续时间 (APD) 的显著延长或轻度缩短,而 ACR2 激活可有效缩短 APD。精细调整这些方法可使 LQTS/SQTS hiPSC-CM 细胞模型中的病理性 AP 特性正常化并抑制心律失常。接下来,我们使用光遗传学交叉场刺激建立了一个 SQTS-hiPSC-CMs 复发性心律失常的组织模型。然后设计了一个 APD 调节光遗传学方案,以动态延长传播波阵面的 APD,完全防止该模型中的心律失常发生。这项工作强调了光遗传学在研究复极化异常和开发新型抗心律失常疗法方面的潜力。