Suppr超能文献

用于单细胞和类器官培养研究的基于芯片实验室的机械致动器和传感器。

Lab-on-a-chip based mechanical actuators and sensors for single-cell and organoid culture studies.

作者信息

Männik Jaan, Teshima Tetsuhiko F, Wolfrum Bernhard, Yang Da

机构信息

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA.

出版信息

J Appl Phys. 2021 Jun 7;129(21):210905. doi: 10.1063/5.0051875. Epub 2021 Jun 2.

Abstract

All living cells constantly experience and respond to mechanical stresses. The molecular networks that activate in cells in response to mechanical stimuli are yet not well-understood. Our limited knowledge stems partially from the lack of available tools that are capable of exerting controlled mechanical stress to individual cells and at the same time observing their responses at subcellular to molecular resolution. Several tools such as rheology setups, micropipetes, and magnetic tweezers have been used in the past. While allowing to quantify short-time viscoelastic responses, these setups are not suitable for long-term observations of cells and most of them have low throughput. In this Perspective, we discuss lab-on-a-chip platforms that have the potential to overcome these limitations. Our focus is on devices that apply shear, compressive, tensile, and confinement derived stresses to single cells and organoid cultures. We compare different design strategies for these devices and highlight their advantages, drawbacks, and future potential. While the majority of these devices are used for fundamental research, some of them have potential applications in medical diagnostics and these applications are also discussed.

摘要

所有活细胞都不断经历并响应机械应力。细胞中因机械刺激而激活的分子网络尚未得到充分理解。我们有限的认知部分源于缺乏能够对单个细胞施加可控机械应力并同时以亚细胞到分子分辨率观察其反应的可用工具。过去曾使用过几种工具,如流变学装置、微量移液器和磁性镊子。虽然这些装置能够量化短期粘弹性反应,但它们不适合对细胞进行长期观察,而且大多数通量较低。在这篇观点文章中,我们讨论了有潜力克服这些局限性的芯片实验室平台。我们关注的是对单细胞和类器官培养施加剪切、压缩、拉伸和限制衍生应力的装置。我们比较了这些装置的不同设计策略,并突出了它们的优点、缺点和未来潜力。虽然这些装置中的大多数用于基础研究,但其中一些在医学诊断方面具有潜在应用,本文也将对此进行讨论。

相似文献

1
Lab-on-a-chip based mechanical actuators and sensors for single-cell and organoid culture studies.
J Appl Phys. 2021 Jun 7;129(21):210905. doi: 10.1063/5.0051875. Epub 2021 Jun 2.
2
Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.
Acc Chem Res. 2016 Sep 20;49(9):2031-40. doi: 10.1021/acs.accounts.6b00333. Epub 2016 Sep 7.
3
Lab-on-a-chip devices as an emerging platform for stem cell biology.
Lab Chip. 2010 Aug 21;10(16):2019-31. doi: 10.1039/c004689b. Epub 2010 Jun 16.
4
Lab-on-a-chip technologies for stem cell analysis.
Trends Biotechnol. 2014 May;32(5):245-53. doi: 10.1016/j.tibtech.2014.03.004. Epub 2014 Apr 9.
5
Global Trends of Organoid and Organ-On-a-Chip in the Past Decade: A Bibliometric and Comparative Study.
Tissue Eng Part A. 2020 Jun;26(11-12):656-671. doi: 10.1089/ten.TEA.2019.0251. Epub 2020 Jan 31.
7
Three-Dimensional Microtubular Devices for Lab-on-a-Chip Sensing Applications.
ACS Sens. 2019 Jun 28;4(6):1476-1496. doi: 10.1021/acssensors.9b00681. Epub 2019 Jun 10.
8
Magnetic Nanotweezers for Interrogating Biological Processes in Space and Time.
Acc Chem Res. 2018 Apr 17;51(4):839-849. doi: 10.1021/acs.accounts.8b00004. Epub 2018 Mar 28.

引用本文的文献

1
Differentiating the roles of proteins and polysomes in nucleoid size homeostasis in Escherichia coli.
Biophys J. 2024 Jun 4;123(11):1435-1448. doi: 10.1016/j.bpj.2023.11.010. Epub 2023 Nov 16.
2
Human Organ-on-a-Chip Microphysiological Systems to Model Musculoskeletal Pathologies and Accelerate Therapeutic Discovery.
Front Bioeng Biotechnol. 2022 Mar 14;10:846230. doi: 10.3389/fbioe.2022.846230. eCollection 2022.
3
The biophysics of cancer: emerging insights from micro- and nanoscale tools.
Adv Nanobiomed Res. 2022 Jan;2(1). doi: 10.1002/anbr.202100056. Epub 2021 Nov 23.

本文引用的文献

1
Microfluidics for the study of mechanotransduction.
J Phys D Appl Phys. 2020 May 27;53(22). doi: 10.1088/1361-6463/ab78d4. Epub 2020 Apr 2.
2
Advances in microfluidic in vitro systems for neurological disease modeling.
J Neurosci Res. 2021 May;99(5):1276-1307. doi: 10.1002/jnr.24794. Epub 2021 Feb 13.
4
Mechanical force-induced morphology changes in a human fungal pathogen.
BMC Biol. 2020 Sep 11;18(1):122. doi: 10.1186/s12915-020-00833-0.
6
Polymer-Based MEMS Electromagnetic Actuator for Biomedical Application: A Review.
Polymers (Basel). 2020 May 22;12(5):1184. doi: 10.3390/polym12051184.
7
A comparison of microfluidic methods for high-throughput cell deformability measurements.
Nat Methods. 2020 Jun;17(6):587-593. doi: 10.1038/s41592-020-0818-8. Epub 2020 Apr 27.
8
Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
Micromachines (Basel). 2020 Jan 21;11(2):114. doi: 10.3390/mi11020114.
9
The effects of polydisperse crowders on the compaction of the Escherichia coli nucleoid.
Mol Microbiol. 2020 May;113(5):1022-1037. doi: 10.1111/mmi.14467. Epub 2020 Feb 5.
10
3D Printed Microfluidics.
Annu Rev Anal Chem (Palo Alto Calif). 2020 Jun 12;13(1):45-65. doi: 10.1146/annurev-anchem-091619-102649. Epub 2019 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验