Suppr超能文献

用于模拟肌肉骨骼疾病并加速治疗发现的人体芯片器官微生理系统。

Human Organ-on-a-Chip Microphysiological Systems to Model Musculoskeletal Pathologies and Accelerate Therapeutic Discovery.

作者信息

Ajalik Raquel E, Alenchery Rahul G, Cognetti John S, Zhang Victor Z, McGrath James L, Miller Benjamin L, Awad Hani A

机构信息

Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States.

Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States.

出版信息

Front Bioeng Biotechnol. 2022 Mar 14;10:846230. doi: 10.3389/fbioe.2022.846230. eCollection 2022.

Abstract

Human Microphysiological Systems (hMPS), otherwise known as organ- and tissue-on-a-chip models, are an emerging technology with the potential to replace animal studies with models that emulate human physiology at basic levels. hMPS platforms are designed to overcome limitations of two-dimensional (2D) cell culture systems by mimicking 3D tissue organization and microenvironmental cues that are physiologically and clinically relevant. Unlike animal studies, hMPS models can be configured for high content or high throughput screening in preclinical drug development. Applications in modeling acute and chronic injuries in the musculoskeletal system are slowly developing. However, the complexity and load bearing nature of musculoskeletal tissues and joints present unique challenges related to our limited understanding of disease mechanisms and the lack of consensus biomarkers to guide biological therapy development. With emphasis on examples of modeling musculoskeletal tissues, joints on chips, and organoids, this review highlights current trends of microphysiological systems technology. The review surveys state-of-the-art design and fabrication considerations inspired by lessons from bioreactors and biological variables emphasizing the role of induced pluripotent stem cells and genetic engineering in creating isogenic, patient-specific multicellular hMPS. The major challenges in modeling musculoskeletal tissues using hMPS chips are identified, including incorporating biological barriers, simulating joint compartments and heterogenous tissue interfaces, simulating immune interactions and inflammatory factors, simulating effects of loading, recording nociceptors responses as surrogates for pain outcomes, modeling the dynamic injury and healing responses by monitoring secreted proteins in real time, and creating arrayed formats for robotic high throughput screens. Overcoming these barriers will revolutionize musculoskeletal research by enabling physiologically relevant, predictive models of human tissues and joint diseases to accelerate and de-risk therapeutic discovery and translation to the clinic.

摘要

人类微生理系统(hMPS),也被称为芯片上的器官和组织模型,是一项新兴技术,有潜力用在基础层面模拟人类生理学的模型取代动物研究。hMPS平台旨在通过模拟生理和临床相关的三维组织架构和微环境线索来克服二维(2D)细胞培养系统的局限性。与动物研究不同,hMPS模型可用于临床前药物开发中的高内涵或高通量筛选。在肌肉骨骼系统急性和慢性损伤建模方面的应用正在缓慢发展。然而,肌肉骨骼组织和关节的复杂性及承重特性带来了独特挑战,这与我们对疾病机制的有限理解以及缺乏指导生物疗法开发的共识生物标志物有关。本文着重以肌肉骨骼组织、芯片上的关节和类器官的建模实例,突出微生理系统技术的当前趋势。本综述调查了受生物反应器经验教训和生物变量启发的最先进设计与制造考量,强调了诱导多能干细胞和基因工程在创建同基因、患者特异性多细胞hMPS中的作用。确定了使用hMPS芯片对肌肉骨骼组织进行建模的主要挑战,包括纳入生物屏障、模拟关节腔室和异质组织界面、模拟免疫相互作用和炎症因子、模拟负荷效应以伤害感受器反应作为疼痛结果的替代指标进行记录、通过实时监测分泌蛋白对动态损伤和愈合反应进行建模,以及创建用于机器人高通量筛选的阵列形式。克服这些障碍将彻底改变肌肉骨骼研究,实现与生理相关的人类组织和关节疾病预测模型,以加速治疗发现并降低临床转化风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17fd/8964284/6ac20479182d/fbioe-10-846230-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验