School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637 551.
Biological and Biomimetic Material Laboratory, Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, NTU, 50 Nanyang Avenue, Singapore 637 553.
J Phys Chem B. 2021 Jul 1;125(25):6776-6790. doi: 10.1021/acs.jpcb.0c11476. Epub 2021 Jun 9.
The increasing realization of the prevalence of liquid-liquid phase separation (LLPS) across multiple length scales of biological constructs, from intracellular membraneless organelles to extracellular load-bearing tissues, has raised intriguing questions about intermolecular interactions regulating LLPS at the atomic level. Squid-beak derived histidine (His)- and tyrosine (Tyr)-rich peptides (HB) have recently emerged as suitable short model peptides to precisely assess the roles of peptide motifs and single residues on the phase behavior and material properties of microdroplets obtained by LLPS. In this study, by systematically introducing single mutations in an HB, we have identified specific sticker residues that attract peptide chains together. We find that His and Tyr residues located near the sequence termini drive phase separation, forming interaction nodes that stabilize microdroplets. Combining quantum chemistry simulations with NMR studies, we predict atomic-level bond geometries and uncover inter-residue supramolecular interactions governing LLPS. These results are subsequently used to propose possible topological arrangements of the peptide chains, which upon expansion can help explain the three-dimensional network of microdroplets. The stability of the proposed topologies carried out through all-atom molecular dynamics simulations predicts chain topologies that are more likely to stabilize the microdroplets. Overall, this study provides useful guidelines for the design of peptide coacervates with tunable phase behavior and material properties. In addition, the analysis of nanoscale topologies may pave the way to understand how client molecules can be trapped within microdroplets, with direct implications for the encapsulation and controlled release of therapeutics for drug delivery applications.
越来越多的人意识到,在从细胞无膜细胞器到细胞外承重组织等多个生物结构的长度尺度上,液-液相分离(LLPS)普遍存在,这引发了人们对在原子水平上调节 LLPS 的分子间相互作用的有趣问题。鱿鱼喙衍生的富含组氨酸(His)和酪氨酸(Tyr)的肽(HB)最近成为合适的短模型肽,可以精确评估肽基序和单个残基在 LLPS 获得的微滴的相行为和材料特性中的作用。在这项研究中,通过在 HB 中系统地引入单个突变,我们确定了吸引肽链聚集在一起的特定粘性残基。我们发现,位于序列末端附近的 His 和 Tyr 残基驱动相分离,形成稳定微滴的相互作用节点。通过将量子化学模拟与 NMR 研究相结合,我们预测了原子级键几何形状,并揭示了控制 LLPS 的分子间超分子相互作用。这些结果随后用于提出肽链的可能拓扑排列,这些排列在展开后可以帮助解释微滴的三维网络。通过全原子分子动力学模拟进行的所提出拓扑结构的稳定性预测更有可能稳定微滴的链拓扑结构。总体而言,这项研究为设计具有可调相行为和材料特性的肽凝聚物提供了有用的指导。此外,纳米级拓扑结构的分析可能为理解如何将客户分子困在微滴内铺平道路,这对药物输送应用中的治疗剂的封装和控制释放具有直接影响。