Hu Jin-Fan, Huang Ting-Zhu, Deng Liang-Jian, Jiang Tai-Xiang, Vivone Gemine, Chanussot Jocelyn
IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):7251-7265. doi: 10.1109/TNNLS.2021.3084682. Epub 2022 Nov 30.
Hyperspectral images (HSIs) are of crucial importance in order to better understand features from a large number of spectral channels. Restricted by its inner imaging mechanism, the spatial resolution is often limited for HSIs. To alleviate this issue, in this work, we propose a simple and efficient architecture of deep convolutional neural networks to fuse a low-resolution HSI (LR-HSI) and a high-resolution multispectral image (HR-MSI), yielding a high-resolution HSI (HR-HSI). The network is designed to preserve both spatial and spectral information thanks to a new architecture based on: 1) the use of the LR-HSI at the HR-MSI's scale to get an output with satisfied spectral preservation and 2) the application of the attention and pixelShuffle modules to extract information, aiming to output high-quality spatial details. Finally, a plain mean squared error loss function is used to measure the performance during the training. Extensive experiments demonstrate that the proposed network architecture achieves the best performance (both qualitatively and quantitatively) compared with recent state-of-the-art HSI super-resolution approaches. Moreover, other significant advantages can be pointed out by the use of the proposed approach, such as a better network generalization ability, a limited computational burden, and the robustness with respect to the number of training samples. Please find the source code and pretrained models from https://liangjiandeng.github.io/Projects_Res/HSRnet_2021tnnls.html.
高光谱图像(HSIs)对于更好地理解来自大量光谱通道的特征至关重要。受其内部成像机制的限制,高光谱图像的空间分辨率往往有限。为了缓解这一问题,在这项工作中,我们提出了一种简单高效的深度卷积神经网络架构,用于融合低分辨率高光谱图像(LR-HSI)和高分辨率多光谱图像(HR-MSI),从而生成高分辨率高光谱图像(HR-HSI)。由于基于以下新架构,该网络旨在保留空间和光谱信息:1)在HR-MSI的尺度上使用LR-HSI以获得具有满意光谱保留的输出;2)应用注意力和像素洗牌模块来提取信息,旨在输出高质量的空间细节。最后,使用简单的均方误差损失函数来衡量训练期间的性能。大量实验表明,与最近的高光谱图像超分辨率方法相比,所提出的网络架构实现了最佳性能(在定性和定量方面)。此外,使用所提出的方法还可以指出其他显著优势,例如更好的网络泛化能力、有限的计算负担以及对训练样本数量的鲁棒性。请从https://liangjiandeng.github.io/Projects_Res/HSRnet_2021tnnls.html找到源代码和预训练模型。