Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America.
PLoS One. 2021 Jun 9;16(6):e0251955. doi: 10.1371/journal.pone.0251955. eCollection 2021.
Newly emerged SARS-CoV-2 is the cause of an ongoing global pandemic leading to severe respiratory disease in humans. SARS-CoV-2 targets epithelial cells in the respiratory tract and lungs, which can lead to amplified chloride secretion and increased leak across epithelial barriers, contributing to severe pneumonia and consolidation of the lungs as seen in many COVID-19 patients. There is an urgent need for a better understanding of the molecular aspects that contribute to SARS-CoV-2-induced pathogenesis and for the development of approaches to mitigate these damaging pathologies. The multifunctional SARS-CoV-2 Envelope (E) protein contributes to virus assembly/egress, and as a membrane protein, also possesses viroporin channel properties that may contribute to epithelial barrier damage, pathogenesis, and disease severity. The extreme C-terminal (ECT) sequence of E also contains a putative PDZ-domain binding motif (PBM), similar to that identified in the E protein of SARS-CoV-1. Here, we screened an array of GST-PDZ domain fusion proteins using either a biotin-labeled WT or mutant ECT peptide from the SARS-CoV-2 E protein. Notably, we identified a singular specific interaction between the WT E peptide and the second PDZ domain of human Zona Occludens-1 (ZO1), one of the key regulators of TJ formation/integrity in all epithelial tissues. We used homogenous time resolve fluorescence (HTRF) as a second complementary approach to further validate this novel modular E-ZO1 interaction. We postulate that SARS-CoV-2 E interacts with ZO1 in infected epithelial cells, and this interaction may contribute, in part, to tight junction damage and epithelial barrier compromise in these cell layers leading to enhanced virus spread and severe dysfunction that leads to morbidity. Prophylactic/therapeutic intervention targeting this virus-host interaction may effectively reduce airway and/or gastrointestinal barrier damage and mitigate virus spread.
新型出现的严重急性呼吸综合征冠状病毒 2 型(SARS-CoV-2)是导致当前全球大流行的原因,会引起人类严重的呼吸道疾病。SARS-CoV-2 靶向呼吸道和肺部的上皮细胞,这可能导致氯离子分泌增加和上皮屏障通透性增加,导致许多 COVID-19 患者出现严重肺炎和肺部实变。目前迫切需要更好地了解导致 SARS-CoV-2 诱导发病机制的分子方面,并开发减轻这些破坏性病理的方法。多功能的 SARS-CoV-2 包膜(E)蛋白有助于病毒组装/出芽,作为一种膜蛋白,它还具有 viroporin 通道特性,这可能导致上皮屏障损伤、发病机制和疾病严重程度。E 的极端 C 末端(ECT)序列还包含一个假定的 PDZ 结构域结合基序(PBM),类似于 SARS-CoV-1 中的 E 蛋白。在这里,我们使用生物素标记的 WT 或 SARS-CoV-2 E 蛋白 ECT 突变肽筛选了一系列 GST-PDZ 结构域融合蛋白。值得注意的是,我们鉴定出 WT E 肽与所有上皮组织中 TJ 形成/完整性的关键调节因子之一的人紧密连接蛋白 1(ZO1)的第二个 PDZ 结构域之间存在单一的特异性相互作用。我们使用均相时间分辨荧光(HTRF)作为第二种互补方法进一步验证了这种新的模块化 E-ZO1 相互作用。我们推测,SARS-CoV-2 E 在感染的上皮细胞中与 ZO1 相互作用,这种相互作用可能部分导致这些细胞层中的紧密连接损伤和上皮屏障受损,从而增强病毒传播和导致发病的严重功能障碍。针对这种病毒-宿主相互作用的预防/治疗干预可能有效地减少气道和/或胃肠道屏障损伤,并减轻病毒传播。