Church C C
Department of Biophysics, School of Medicine and Dentistry, University of Rochester, New York 14642.
J Acoust Soc Am. 1988 Jun;83(6):2210-7. doi: 10.1121/1.396349.
A computer study of rectified diffusion was made over the biomedical frequency range (1-10 MHz). Solutions of the Gilmore-Akulichev [E. Cramer, in Cavitation and Inhomogeneities in Underwater Acoustics, edited by W. Lauterborn (Springer, New York, 1980), pp. 54-63] formulation for bubble dynamics were combined with the Eller-Flynn [A. Eller and H.G. Flynn, J. Acoust. Soc. Am. 37, 493-503 (1965)] approach to rectified diffusion in order to calculate thresholds and growth rates. It is found that: (1) for frequencies above 1 MHz, the widely held view that small bubbles grow by rectified diffusion to "resonance size" and then collapse violently is true only for narrow ranges of bubbles; (2) growth rates in the low megahertz range can be quite high for medically relevant pressures, approximately 20 micron/s at 1 MHz, 1 bar; (3) thresholds derived analytically are accurate for low frequencies over a wide range of bubble radii but, for high frequencies, only near the fundamental resonance radius; and (4) thresholds are quite sensitive to dissolved gas concentration at low frequencies.
在生物医学频率范围(1 - 10兆赫兹)内对整流扩散进行了计算机研究。将吉尔摩 - 阿库利切夫[E. 克莱默,载于《水下声学中的空化与不均匀性》,W. 劳特伯恩编辑(施普林格出版社,纽约,1980年),第54 - 63页]的气泡动力学公式的解与埃勒 - 弗林[A. 埃勒和H.G. 弗林,《美国声学学会杂志》37,493 - 503(1965年)]的整流扩散方法相结合,以计算阈值和增长率。研究发现:(1)对于频率高于1兆赫兹的情况,普遍认为小气泡通过整流扩散生长到“共振尺寸”然后剧烈崩溃的观点仅适用于窄范围的气泡;(2)在低兆赫兹范围内,对于医学相关压力,增长率可能相当高,在1兆赫兹、1巴时约为20微米/秒;(3)通过解析得出的阈值在低频时对于宽范围的气泡半径是准确的,但对于高频,仅在基本共振半径附近准确;(4)阈值在低频时对溶解气体浓度相当敏感。