Suppr超能文献

利用水凝胶基微系统作为新的 3D 平台定量纳米治疗剂的渗透。

Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D platform.

机构信息

University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.

Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.

出版信息

Lab Chip. 2021 Jun 29;21(13):2495-2510. doi: 10.1039/d1lc00192b.

Abstract

The huge gap between 2D in vitro assays used for drug screening and the in vivo 3D physiological environment hampered reliable predictions for the route and accumulation of nanotherapeutics in vivo. For such nanotherapeutics, multi-cellular tumour spheroids (MCTS) are emerging as a good alternative in vitro model. However, the classical approaches to produce MCTS suffer from low yield, slow process, difficulties in MCTS manipulation and compatibility with high-magnification fluorescence optical microscopy. On the other hand, spheroid-on-chip set-ups developed so far require a practical knowledge of microfluidics difficult to transfer to a cell biology laboratory. We present here a simple yet highly flexible 3D model microsystem consisting of agarose-based microwells. Fully compatible with the multi-well plate format conventionally used in cell biology, our simple process enables the formation of hundreds of reproducible spheroids in a single pipetting. Immunostaining and fluorescence imaging including live high-resolution optical microscopy can be performed in situ, with no manipulation of spheroids. As a proof of principle of the relevance of such an in vitro platform for nanotherapeutic evaluation, this study investigates the kinetics and localisation of nanoparticles within colorectal cancer MCTS cells (HCT-116). The nanoparticles chosen are sub-5 nm ultrasmall nanoparticles made of polysiloxane and gadolinium chelates that can be visualized in MRI (AGuIX®, currently implicated in clinical trials as effective radiosensitizers for radiotherapy) and confocal microscopy after addition of Cy5.5. We show that the amount of AGuIX® nanoparticles within cells is largely different in 2D and 3D. Using our flexible agarose-based microsystems, we are able to resolve spatially and temporally the penetration and distribution of AGuIX® nanoparticles within MCTS. The nanoparticles are first found in both extracellular and intracellular space of MCTS. While the extracellular part is washed away after a few days, we evidenced intracellular localisation of AGuIX®, mainly within the lysosomal compartment, but also occasionally within mitochondria. Hence, our agarose-based microsystem appears as a promising 3D in vitro user-friendly platform for investigation of nanotherapeutic transport, ahead of in vivo studies.

摘要

用于药物筛选的 2D 体外测定与体内 3D 生理环境之间存在巨大差距,这阻碍了对纳米药物在体内的途径和积累的可靠预测。对于此类纳米药物,多细胞肿瘤球体(MCTS)作为一种替代的体外模型正在兴起。然而,经典的 MCTS 生产方法存在产量低、过程缓慢、MCTS 操作困难以及与高倍荧光光学显微镜不兼容等问题。另一方面,迄今为止开发的球体芯片装置需要对微流控技术有实际的了解,而这种知识很难转移到细胞生物学实验室。在这里,我们提出了一种简单但非常灵活的基于琼脂糖的微井 3D 模型微系统。该系统完全与细胞生物学中常用的多孔板格式兼容,我们的简单工艺可在单次移液中形成数百个可重复的球体。可以原位进行免疫染色和荧光成像,包括活细胞高分辨率光学显微镜观察,而无需对球体进行操作。作为这种体外平台用于纳米药物评估的相关性的原理验证,本研究调查了纳米颗粒在结直肠癌细胞 MCTS(HCT-116)中的动力学和定位。选择的纳米颗粒是由聚硅氧烷和钆螯合物组成的亚 5nm 超小纳米颗粒,可在 MRI(AGuIX®,目前作为放射治疗的有效增敏剂,正在临床试验中)和添加 Cy5.5 后的共聚焦显微镜中可视化。我们表明,细胞内的 AGuIX®纳米颗粒数量在 2D 和 3D 中差异很大。使用我们灵活的基于琼脂糖的微系统,我们能够在空间和时间上解析 AGuIX®纳米颗粒在 MCTS 中的穿透和分布。纳米颗粒首先在 MCTS 的细胞内外空间中被发现。尽管几天后,细胞外部分被冲走,但我们证明了 AGuIX®的细胞内定位,主要在溶酶体区室中,但偶尔也在线粒体中。因此,我们的基于琼脂糖的微系统似乎是一种有前途的 3D 体外友好型平台,可用于在体内研究之前研究纳米药物的转运。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验