Choi Cheol Hee, Kim Taikyu, Ueda Shigenori, Shiah Yu-Shien, Hosono Hideo, Kim Junghwan, Jeong Jae Kyeong
Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea.
National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.
ACS Appl Mater Interfaces. 2021 Jun 23;13(24):28451-28461. doi: 10.1021/acsami.1c04210. Epub 2021 Jun 11.
In this work, high-performance amorphous InGaSnO (-IGTO) transistors with an atomic layer-deposited AlO dielectric layer were fabricated at a maximum processing temperature of 150 °C. Hydrogen (H) and excess oxygen (O) in the AlO film, which was controlled by adjusting the oxygen radical density (P: flow rate of O/[Ar+O]) in the radio-frequency (rf) plasma during ALD growth of AlO, significantly affected the performance and stability of the resulting IGTO transistors. The concentrations of H and O in AlO/IGTO stacks according to P were characterized by secondary ion mass spectroscopy, X-ray photoelectron spectroscopy, hard X-ray photoemission spectroscopy, and thermal desorption spectroscopy. The high concentration of H at a low P of 2.5% caused heavy electron doping in the underlying IGTO during thermal annealing at 150 °C, leading to a conductive behavior in the resulting transistor without modulation capability. In contrast, a high P condition of 20% introduced O molecules (or O) into the AlO film, which negatively impacted the carrier mobility and caused anomalous photo-bias instability in the IGTO transistor. Through in-depth understanding of how to manipulate H and O in AlO by controlling the P, we fabricated high-performance IGTO transistors with a high field-effect mobility (μ) of 58.8 cm/Vs, subthreshold gate swing () of 0.12 V/decade, threshold voltage () of 0.5 V, and ratio of ∼10 even at the maximum processing temperature of 150 °C. Simultaneously, the optimized devices were resistant to exposure to external positive gate bias stress (PBS) and negative bias stress (NBS) for 3600 s, where the shifts for exposure to PBS and NBS for this duration were 0.1 V and -0.15 V, respectively.
在本工作中,制备了具有原子层沉积AlO介电层的高性能非晶InGaSnO(-IGTO)晶体管,其最高加工温度为150°C。在AlO的原子层沉积(ALD)生长过程中,通过调节射频(rf)等离子体中的氧自由基密度(P:O/[Ar + O]的流量)来控制AlO膜中的氢(H)和过量氧(O),这显著影响了所得IGTO晶体管的性能和稳定性。通过二次离子质谱、X射线光电子能谱、硬X射线光发射光谱和热脱附光谱对AlO/IGTO堆叠中根据P的H和O浓度进行了表征。在2.5%的低P值下,高浓度的H在150°C热退火期间导致下层IGTO中严重的电子掺杂,导致所得晶体管具有导电行为但无调制能力。相反,20%的高P条件将O分子(或O)引入AlO膜中,这对载流子迁移率产生负面影响,并导致IGTO晶体管出现异常的光偏置不稳定性。通过深入了解如何通过控制P来操纵AlO中的H和O,我们制备了高性能的IGTO晶体管,其具有58.8 cm²/Vs的高场效应迁移率(μ)、0.12 V/十倍频程的亚阈值栅极摆幅()、0.5 V的阈值电压()以及即使在150°C的最高加工温度下也约为10的 比。同时,优化后的器件能够抵抗3600 s的外部正栅极偏置应力(PBS)和负偏置应力(NBS),在此持续时间内暴露于PBS和NBS时的 偏移分别为0.1 V和 -0.15 V。