Suppr超能文献

采用人工神经网络预测纳米[化学式:见正文]涂覆棉复合材料的功能特性。

Prediction of functional properties of nano [Formula: see text] coated cotton composites by artificial neural network.

机构信息

Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic.

出版信息

Sci Rep. 2021 Jun 10;11(1):12235. doi: 10.1038/s41598-021-91733-y.

Abstract

This paper represents the efficiency of machine learning tool, i.e., artificial neural network (ANN), for the prediction of functional properties of nano titanium dioxide coated cotton composites. A comparative analysis was performed between the predicted results of ANN, multiple linear regression (MLR) and experimental results. ANN was applied to map out the complex input-output conditions to predict the optimal results. A backpropagation ANN model called a multilayer perceptron (MLP), trained with Bayesian regularization were used in this study. The amount of chemicals and reaction time were selected as input variables and the amount of titanium dioxide coated on cotton, self-cleaning efficiency, antimicrobial efficiency and ultraviolet protection factor were analysed as output results. The accuracy of the proposed algorithm was evaluated and compared with MLR results. The obtained results reveal that MLP provides efficient results that are statistically significant in the prediction of functional properties ([Formula: see text]) compared to MLR. The correlation coefficient of MLP model ([Formula: see text]) indicates that there is a strong correlation between the measured and predicted functional properties with a trivial mean absolute error and root mean square errors values. MLP model is suitable for the functional properties and can be used for the investigation of other properties of nano coated fabrics.

摘要

本文旨在展示机器学习工具(即人工神经网络 (ANN))在预测纳米二氧化钛涂层棉复合材料功能特性方面的效率。对 ANN、多元线性回归 (MLR) 和实验结果的预测结果进行了对比分析。ANN 被应用于绘制复杂的输入-输出条件,以预测最佳结果。在这项研究中,使用了一种称为多层感知器 (MLP) 的反向传播 ANN 模型,并采用贝叶斯正则化进行训练。化学物质的用量和反应时间被选为输入变量,而棉上涂覆的二氧化钛量、自清洁效率、抗菌效率和紫外线防护因子被分析为输出结果。评估了所提出算法的准确性,并与 MLR 结果进行了比较。结果表明,与 MLR 相比,MLP 在预测功能特性方面提供了高效且具有统计学意义的结果([Formula: see text])。MLP 模型的相关系数([Formula: see text])表明,测量值和预测值之间存在很强的相关性,平均绝对误差和均方根误差值很小。MLP 模型适用于功能特性,可以用于研究其他纳米涂层织物的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131f/8192757/4be9d823dcc1/41598_2021_91733_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验