Suppr超能文献

使用人工智能预测间皮瘤:常见模型与应用的范围综述

Predicting Mesothelioma Using Artificial Intelligence: A Scoping Review of Common Models and Applications.

作者信息

Ram Malihe, Afrash Mohammad Reza, Moulaei Khadijeh, Esmaeeli Erfan, Khorashadizadeh Mohadeseh Sadat, Garavand Ali, Amiri Parastoo, Sabahi Azam

机构信息

Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran.

Artificial Intelligence in Medical Sciences Research Center, Smart University of Medical Sciences, Tehran, Iran.

出版信息

Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251341053. doi: 10.1177/15330338251341053. Epub 2025 May 8.

Abstract

IntroductionMesothelioma is a type of lung cancer caused by asbestos exposure, and early diagnosis is crucial for improving survival chances. Artificial intelligence offers a potential solution for the timely diagnosis and staging of the disease. This study aims to review the latest research conducted in artificial intelligence applications to predict mesothelioma.MethodsUntil April 24, 2023, PubMed, Scopus, and Web of Science databases were searched comprehensively for articles on artificial intelligence in mesothelioma management. The data was gathered using a standardized extraction form, and the findings were reported in figures and tables.ResultsOne hundred and seventy-three articles were identified from database searches, which were then reduced to 151 after eliminating duplicates. Finally, 19 articles were selected for inclusion in our study. The applications of artificial intelligence in these articles primarily focused on tumor diagnosis and classification (73.69%), followed by prevention and prognosis (21.05%) and tumor volumetric measurement of malignant pleural mesothelioma (5.26%). The most frequently used AI models include types of neural networks (NN), decision trees (DT), random forests (RF), logistic regression (LogR), Naïve Bayes (NB), and support vector machines (SVM). SVM, DT, and RF emerged as prominent models, achieving high accuracies ranging from 78.3% to 99.97%. Genetic algorithms, correlation-based algorithms, and Neural Networks were employed for risk factor identification and feature selection.ConclusionArtificial intelligence, particularly machine learning models such as neural networks, decision trees, support vector machines, and random forests, holds promise in predicting and managing mesothelioma, potentially enhancing early detection and improving patient outcomes.

摘要

引言

间皮瘤是一种因接触石棉而引发的肺癌,早期诊断对于提高生存几率至关重要。人工智能为该疾病的及时诊断和分期提供了一种潜在的解决方案。本研究旨在综述在人工智能应用于预测间皮瘤方面所开展的最新研究。

方法

截至2023年4月24日,全面检索了PubMed、Scopus和Web of Science数据库中关于人工智能在间皮瘤管理方面的文章。使用标准化提取表收集数据,并以图表形式呈现研究结果。

结果

通过数据库检索确定了173篇文章,去除重复后减至151篇。最终,选择了19篇文章纳入我们的研究。这些文章中人工智能的应用主要集中在肿瘤诊断和分类(73.69%),其次是预防和预后(21.05%)以及恶性胸膜间皮瘤的肿瘤体积测量(5.26%)。最常用的人工智能模型包括神经网络(NN)、决策树(DT)、随机森林(RF)、逻辑回归(LogR)、朴素贝叶斯(NB)和支持向量机(SVM)。支持向量机、决策树和随机森林成为突出的模型,准确率高达78.3%至99.97%。遗传算法、基于相关性的算法和神经网络被用于风险因素识别和特征选择。

结论

人工智能,特别是神经网络、决策树、支持向量机和随机森林等机器学习模型,在预测和管理间皮瘤方面具有前景,有可能加强早期检测并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c88b/12065984/d257b1bb9a8a/10.1177_15330338251341053-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验