具有联合 MRI 和热疗用于癌症治疗的潜在应用的隐形(磁赤铁矿/PLGA)/壳聚糖(核/壳)/壳纳米复合材料的工程化。
Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer.
机构信息
Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.
出版信息
J Mater Chem B. 2021 Jun 23;9(24):4963-4980. doi: 10.1039/d1tb00354b.
(Maghemite/poly(d,l-lactide-co-glycolide))/chitosan (core/shell)/shell nanoparticles have been prepared reproducibly by nanoprecipitation solvent evaporation plus coacervation (production performance ≈ 45%, average size ≈ 325 nm). Transmission electron microscopy, energy dispersive X-ray spectroscopy, electrophoretic determinations, and X-ray diffraction patterns demonstrated the satisfactory embedment of iron oxide nanocores within the solid polymer matrix and the formation of an external shell of chitosan in the nanostructure. The adequate magnetic responsiveness of the nanocomposites was characterized in vitro by hysteresis cycle determinations and by visualization of the nanosystem under the influence of a 0.4 T permanent magnet. Safety and biocompatibility of the (core/shell)/shell particles were based on in vitro haemocompatibility studies and cytotoxicity tests against HFF-1 human foreskin fibroblasts and on ex vivo toxicity assessments on tissue samples from Balb/c mice. Transversal relaxivities, determined in vitro at a low magnetic field of 1.44 T, demonstrated their capability as T2 contrast agents for magnetic resonance imaging, being comparable to that of some iron oxide-based contrast agents. Heating properties were evaluated in a high frequency alternating electromagnetic gradient: a constant maximum temperature of ≈46 °C was generated within ≈50 min, while antitumour hyperthermia tests on T-84 colonic adenocarcinoma cells proved the relevant decrease in cell viability (to ≈ 39%) when treated with the nanosystem under the influence of that electromagnetic field. Finally, in vivo magnetic resonance imaging studies and ex vivo histology determinations of iron deposits postulated the efficacy of chitosan to provide long-circulating capabilities to the nanocomposites, retarding nanoparticle recognition by the mononuclear phagocyte system. To our knowledge, this is the first study describing such a type of biocompatible and long-circulating nanoplatform with promising theranostic applications (biomedical imaging and hyperthermia) against cancer.
(磁赤铁矿/聚(D,L-丙交酯-共-乙交酯))/壳聚糖(核/壳)/壳纳米粒子通过纳米沉淀溶剂蒸发和共凝聚法可重复性地制备(生产性能≈45%,平均粒径≈325nm)。透射电子显微镜、能量色散 X 射线能谱、电泳测定和 X 射线衍射图谱表明,氧化铁纳米核在固体聚合物基质中的良好嵌入和壳聚糖在纳米结构中的外部壳的形成。纳米复合材料的适当磁响应通过滞后循环测定和在 0.4T 永磁体的影响下观察纳米系统进行体外表征。(核/壳)/壳粒子的安全性和生物相容性基于体外血液相容性研究和对 HFF-1 人包皮成纤维细胞的细胞毒性试验以及对 Balb/c 小鼠组织样本的体外毒性评估。在 1.44T 的低磁场下体外测定的横向弛豫率表明,它们作为磁共振成像 T2 对比剂的能力,与一些氧化铁基对比剂相当。在高频交变电磁场中评估了加热性能:在 ≈50 分钟内产生了 ≈46°C 的恒定最高温度,而在 T-84 结肠腺癌细胞的肿瘤热疗试验中,当纳米系统在该电磁场的影响下治疗时,细胞活力显著下降(至 ≈39%)。最后,体内磁共振成像研究和铁沉积的体外组织学测定表明壳聚糖能够为纳米复合材料提供长循环能力,从而延缓单核吞噬细胞系统对纳米粒子的识别。据我们所知,这是第一个描述这种类型的生物相容性和长循环纳米平台的研究,具有有前途的治疗应用(生物医学成像和热疗)对抗癌症。