文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

核壳结构 Fe₃O₄-金-壳聚糖纳米结构的合成与表征。

Synthesis and characterization of core-shell Fe₃O₄-gold-chitosan nanostructure.

机构信息

Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.

出版信息

J Nanobiotechnology. 2012 Jan 5;10:3. doi: 10.1186/1477-3155-10-3.


DOI:10.1186/1477-3155-10-3
PMID:22221555
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3265409/
Abstract

BACKGROUND: Fe₃O₄-gold-chitosan core-shell nanostructure can be used in biotechnological and biomedical applications such as magnetic bioseparation, water and wastewater treatment, biodetection and bioimaging, drug delivery, and cancer treatment. RESULTS: Magnetite nanoparticles with an average size of 9.8 nm in diameter were synthesized using the chemical co-precipitation method. A gold-coated Fe₃O₄ monotonous core-shell nanostructure was produced with an average size of 15 nm in diameter by glucose reduction of Au³⁺ which is then stabilized with a chitosan cross linked by formaldehyde. The results of analyses with X-ray diffraction (XRD), Fourier Transformed Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), and Atomic Force Microscopy (AFM) indicated that the nanoparticles were regularly shaped, and agglomerate-free, with a narrow size distribution. CONCLUSIONS: A rapid, mild method for synthesizing Fe₃O₄-gold nanoparticles using chitosan was investigated. A magnetic core-shell-chitosan nanocomposite, including both the supermagnetic properties of iron oxide and the optical characteristics of colloidal gold nanoparticles, was synthesized.

摘要

背景:Fe₃O₄-金-壳聚糖核壳纳米结构可用于生物技术和生物医学应用,如磁生物分离、水和废水处理、生物检测和生物成像、药物输送和癌症治疗。

结果:采用化学共沉淀法合成了平均粒径为 9.8nm 的磁铁矿纳米粒子。通过葡萄糖还原 Au³⁺生成了平均粒径为 15nm 的金包覆的 Fe₃O₄单调核壳纳米结构,然后用甲醛交联壳聚糖稳定。X 射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、透射电子显微镜(TEM)和原子力显微镜(AFM)的分析结果表明,纳米粒子形状规则,无团聚,粒径分布较窄。

结论:研究了一种使用壳聚糖快速温和合成 Fe₃O₄-金纳米粒子的方法。合成了一种包括氧化铁超顺磁性和胶体金纳米粒子光学特性的磁性核壳壳聚糖纳米复合材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/ed2293a01e76/1477-3155-10-3-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/7bf4a06fc515/1477-3155-10-3-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/2ae96a9adbc7/1477-3155-10-3-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/896f7bd81f0e/1477-3155-10-3-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/31d7dfdf214f/1477-3155-10-3-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/115cd54f0615/1477-3155-10-3-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/f2a35b8f2f53/1477-3155-10-3-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/0dc0ce3307f7/1477-3155-10-3-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/6a716f008348/1477-3155-10-3-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/ed2293a01e76/1477-3155-10-3-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/7bf4a06fc515/1477-3155-10-3-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/2ae96a9adbc7/1477-3155-10-3-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/896f7bd81f0e/1477-3155-10-3-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/31d7dfdf214f/1477-3155-10-3-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/115cd54f0615/1477-3155-10-3-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/f2a35b8f2f53/1477-3155-10-3-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/0dc0ce3307f7/1477-3155-10-3-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/6a716f008348/1477-3155-10-3-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/3265409/ed2293a01e76/1477-3155-10-3-9.jpg

相似文献

[1]
Synthesis and characterization of core-shell Fe₃O₄-gold-chitosan nanostructure.

J Nanobiotechnology. 2012-1-5

[2]
Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application.

Spectrochim Acta A Mol Biomol Spectrosc. 2015-9-5

[3]
Synthesis and characterization of core-shell Au Fe oxide nanocomposites and their application for detecting immunological interaction.

Monoclon Antib Immunodiagn Immunother. 2014-4

[4]
Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

Molecules. 2013-6-27

[5]
Preparation and properties of hybrid monodispersed magnetic α-Fe2O3 based chitosan nanocomposite film for industrial and biomedical applications.

Int J Biol Macromol. 2010-11-4

[6]
Synthesis of stabilized myrrh-capped hydrocolloidal magnetite nanoparticles.

Molecules. 2014-7-31

[7]
Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications.

Int J Biol Macromol. 2019-3-30

[8]
Preparation and Biocompatibility of Gold@ Polypyrrole-Chitosan with Core-Shell Nanostructure.

J Nanosci Nanotechnol. 2016-3

[9]
Synthesis and characterisation of a pH-sensitive magnetic nanocomposite for controlled delivery of doxorubicin.

J Microencapsul. 2015

[10]
Fabrication, optimization, and characterization of ultra-small superparamagnetic FeO and biocompatible FeO@ZnS core/shell magnetic nanoparticles: Ready for biomedicine applications.

Mater Sci Eng C Mater Biol Appl. 2019-1-2

引用本文的文献

[1]
pH-Responsive Chitosan-Doped ZnO Hybrid Hydrogels for the Encapsulation of Bioactive Compounds in Aquaculture.

Polymers (Basel). 2023-10-16

[2]
Cetuximab-Conjugated Magnetic Poly(Lactic-co-Glycolic Acid) Nanoparticles for Dual-Targeted Delivery of Irinotecan in Glioma Treatment.

Materials (Basel). 2023-8-8

[3]
Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness.

ACS Omega. 2022-7-25

[4]
Treatment of tumour tissue with radio-frequency hyperthermia (using antibody-carrying nanoparticles).

IET Nanobiotechnol. 2021-10

[5]
Bioinspired Green Synthesis of Chitosan and Zinc Oxide Nanoparticles with Strong Antibacterial Activity against Rice Pathogen pv. .

Molecules. 2020-10-19

[6]
Paclitaxel Magnetic Core⁻Shell Nanoparticles Based on Poly(lactic acid) Semitelechelic Novel Block Copolymers for Combined Hyperthermia and Chemotherapy Treatment of Cancer.

Pharmaceutics. 2019-5-3

[7]
Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications.

Nanoscale Res Lett. 2017-12

[8]
Inhibition of a sulfate reducing bacterium, Desulfovibrio marinisediminis GSR3, by biosynthesized copper oxide nanoparticles.

3 Biotech. 2016-6

[9]
Fluctuation Spectroscopy Analysis of Glucose Capped Gold Nanoparticles.

Langmuir. 2016-12-9

[10]
Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery.

Drug Des Devel Ther. 2016-1-28

本文引用的文献

[1]
Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury.

J Exp Biol. 2010-5

[2]
Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles.

Biotechnol Bioeng. 2009-9-1

[3]
Alginate and chitosan particles as drug delivery system for cell therapy.

Biomed Microdevices. 2008-4

[4]
Monodispersed core-shell Fe3O4@Au nanoparticles.

J Phys Chem B. 2005-11-24

[5]
The influence of macromolecular crowding on HIV-1 protease internal dynamics.

J Am Chem Soc. 2006-5-10

[6]
The synthesis of GoldMag nano-particles and their application for antibody immobilization.

Biomed Microdevices. 2005-6

[7]
Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.

Biomaterials. 2005-6

[8]
Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.

Biomaterials. 2002-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索