Suppr超能文献

在部署环境中减轻 SARS-CoV-2 的影响。

Mitigating SARS-CoV-2 in the Deployed Environment.

机构信息

Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA.

School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA.

出版信息

Mil Med. 2023 Jan 4;188(1-2):e74-e79. doi: 10.1093/milmed/usab189.

Abstract

INTRODUCTION

Unlike other communal living environments (universities, boarding schools, and camps) that have been suspended during the COVID-19 pandemic, the deployed military force must continue its mission. Early challenges in the 2020 deployed environment included limited availability of living and quarantine space and limited testing capacity. This is a brief report of stringent quarantine strategies employed to newly arriving cohorts at a NATO and U.S. military base to prevent release of SARS-CoV-2 into a larger base population.

METHODS

With awareness of the worldwide pandemic, beginning in late February 2020, all personnel arriving to the Hamid Karzai International Airport NATO base were quarantined for 14 days to prevent interaction with the wider base population. Testing capacity was limited. Names, locations, and dates of those within quarantine were tracked to improve contact tracing. Between February and April 2020, the first cases of SARS-CoV-2 were diagnosed on a military base in Afghanistan within quarantine.

RESULTS

Within quarantine, 11 males became PCR positive for SARS-CoV-2 during April 2020. Five of the 11 were PCR tested for symptoms of fever, cough, or loss of taste. A sixth individual, who had been asymptomatic upon leaving the base after completion of quarantine, later developed symptoms and tested positive. Another five asymptomatic individuals were found with antibody testing just before planned release from 14 days of quarantine post-exposure and confirmed with PCR testing. All PCR-positive individuals were diagnosed before being released into the general population of the base because of strict screening, quarantine, and exit criteria.

CONCLUSION

Quarantine creates significant strain on resources in a deployed environment. Group quarantine facilities where social distancing is limited allow for the possibility for intra-quarantine transmission of SARS-CoV-2. Ideally, PCR testing is done upon entry into quarantine and upon exit. With the possibility of false-negative PCR or limited PCR testing, we recommend daily symptom screening, pulse oximetry, temperature checks, and small quarantine groups that must "graduate" together-all meeting exit criteria. Any introduction of new individual, even with negative testing, to a group increases risk of SARS-CoV-2 transmission.Upon exit of quarantine, testing should be performed, regardless of entry testing. If PCR is limited, serology testing should be done, followed by PCR, if positive. Serology testing can be combined with clinical judgment to conserve PCR testing for quarantine release of asymptomatic individuals.

摘要

简介

与其他在 COVID-19 大流行期间暂停的群居环境(大学、寄宿学校和营地)不同,部署的军队必须继续执行任务。2020 年部署环境中的早期挑战包括有限的生活和隔离空间以及有限的检测能力。这是一份简要报告,介绍了北约和美国军事基地为防止 SARS-CoV-2 传播到更大的基地人群而对新到人员采取的严格隔离策略。

方法

早在 2020 年 2 月底,随着对全球大流行的认识,所有抵达哈米德·卡尔扎伊国际机场北约基地的人员都被隔离 14 天,以防止与更广泛的基地人群接触。检测能力有限。被隔离人员的姓名、地点和日期都被跟踪,以改进接触者追踪。2020 年 2 月至 4 月期间,在阿富汗的一个军事基地内首次在隔离中诊断出 SARS-CoV-2 病例。

结果

在隔离期间,2020 年 4 月期间有 11 名男性的 SARS-CoV-2 PCR 检测呈阳性。在出现发热、咳嗽或味觉丧失症状的 11 人中有 5 人接受了 PCR 检测。第六名在完成隔离后离开基地时无症状的个体后来出现症状并检测呈阳性。在计划从隔离后 14 天释放之前,通过抗体检测发现另外 5 名无症状个体呈阳性,并通过 PCR 检测得到证实。由于严格的筛选、隔离和退出标准,所有 PCR 阳性个体都在释放到基地人群之前被诊断出来。

结论

隔离在部署环境中对资源造成了巨大压力。社交距离有限的集体隔离设施允许 SARS-CoV-2 在隔离区内传播。理想情况下,PCR 检测应在进入隔离区和离开隔离区时进行。由于存在假阴性 PCR 或有限的 PCR 检测的可能性,我们建议每天进行症状筛查、脉搏血氧饱和度检查、体温检查,并将必须一起“毕业”的小隔离组进行管理——所有这些都要达到退出标准。任何新个体的引入,即使检测呈阴性,都会增加 SARS-CoV-2 传播的风险。隔离期满后,无论最初检测结果如何,都应进行检测。如果 PCR 有限,应进行血清学检测,阳性者进行 PCR 检测。如果可能,应将血清学检测与临床判断相结合,以节省 PCR 检测用于隔离无症状个体的释放。

相似文献

1
Mitigating SARS-CoV-2 in the Deployed Environment.
Mil Med. 2023 Jan 4;188(1-2):e74-e79. doi: 10.1093/milmed/usab189.
2
Management of COVID-19 in a Deployed Setting.
Mil Med. 2023 Mar 20;188(3-4):e451-e455. doi: 10.1093/milmed/usab218.
3
SARS-CoV-2 seroprevalence and transmission risk factors among high-risk close contacts: a retrospective cohort study.
Lancet Infect Dis. 2021 Mar;21(3):333-343. doi: 10.1016/S1473-3099(20)30833-1. Epub 2020 Nov 2.
4
Case series of coronavirus (SARS-CoV-2) in a military recruit school: clinical, sanitary and logistical implications.
BMJ Mil Health. 2021 Aug;167(4):251-254. doi: 10.1136/bmjmilitary-2020-001482. Epub 2020 Apr 16.
6
Routine asymptomatic testing strategies for airline travel during the COVID-19 pandemic: a simulation study.
Lancet Infect Dis. 2021 Jul;21(7):929-938. doi: 10.1016/S1473-3099(21)00134-1. Epub 2021 Mar 23.
7
Preventing and Mitigating SARS-CoV-2 Transmission - Four Overnight Camps, Maine, June-August 2020.
MMWR Morb Mortal Wkly Rep. 2020 Sep 4;69(35):1216-1220. doi: 10.15585/mmwr.mm6935e1.
9
Silent disease and loss of taste and smell are common manifestations of SARS-COV-2 infection in a quarantine facility: Saudi Arabia.
PLoS One. 2020 Oct 30;15(10):e0241258. doi: 10.1371/journal.pone.0241258. eCollection 2020.
10
Comparison of molecular testing strategies for COVID-19 control: a mathematical modelling study.
Lancet Infect Dis. 2020 Dec;20(12):1381-1389. doi: 10.1016/S1473-3099(20)30630-7. Epub 2020 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验