Suppr超能文献

成骨细胞的能量代谢。

Energy Metabolism of Osteocytes.

机构信息

Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.

Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.

出版信息

Curr Osteoporos Rep. 2021 Aug;19(4):444-451. doi: 10.1007/s11914-021-00688-6. Epub 2021 Jun 12.

Abstract

PURPOSE OF REVIEW

In this review, we provide a recent update on bioenergetic pathways in osteocytes and identify potential future areas of research interest. Studies have identified a role for regulation of bone formation and bone resorption through osteocyte mechanosensing and osteocyte secreted factors. Nevertheless, there is a paucity of studies on the bioenergetics and energy metabolism of osteocytes, which are required for the regulation of bone remodeling.

RECENT FINDINGS

Osteocytes are cells of the osteoblast lineage embedded in bone. The osteocyte lacunocanalicular network within the skeletal matrix is exposed to a unique hypoxic environment. Therefore, the bioenergetic requirements of these cells could differ from other bone cells due to its location in the ossified matrix and its role in bone regulation transduced by mechanical signals. Recent findings highlighted in this review provide some evidence that metabolism of these cells is dependent on their location due to the substrates present in the microenvironment and metabolic cues from stress pathways. Both glycolysis (glucose metabolism) and oxidative phosphorylation (mitochondrial dynamics, ROS generation) affect osteocyte function and viability. In this review, we provide evidence that is currently available about information regarding bioenergetics pathways in osteocytes. We discuss published studies showing a role for hypoxia-driven glucose metabolism in regulating osteocyte bioenergetics. We also provide information on various substrates that osteocytes could utilize to fuel energetic needs, namely pyruvate, amino acids, and fatty acids. This is based on some preliminary experimental evidence that is available in literature. The role of parathyroid hormone PTH and parathryoid hormone-related peptide PTHrP in bone anabolism and resorption, along with regulation of metabolic pathways in the cells of the skeletal niche, needs to be explored further. Mitochondrial metabolism has a role in osteocyte bioenergetics through substrate utilization, location of the osteocyte in the bone cortex, and mitochondrial biogenesis. While there are limitations in studying metabolic flux in traditional cell lines, there are now novel cell lines and sophisticated tools available to study osteocyte bioenergetics to help harness its potential in vivo in the future.

摘要

目的综述

在这篇综述中,我们提供了骨细胞生物能量途径的最新研究进展,并确定了未来潜在的研究兴趣领域。研究已经确定了骨细胞机械感受和分泌因子在调节骨形成和骨吸收中的作用。然而,骨细胞的生物能量和能量代谢的研究还很少,而这些对于调节骨重塑是必需的。

最近的发现

骨细胞是成骨细胞谱系中的细胞,嵌入在骨骼中。骨骼基质中的骨细胞陷窝-小管系统暴露在一个独特的低氧环境中。因此,由于其在骨化基质中的位置及其通过机械信号传递的骨调节作用,这些细胞的生物能量需求可能与其他骨细胞不同。本综述中强调的最近发现提供了一些证据,表明由于微环境中存在的底物和应激途径的代谢线索,这些细胞的代谢依赖于其位置。糖酵解(葡萄糖代谢)和氧化磷酸化(线粒体动力学、ROS 产生)都影响骨细胞的功能和活力。在本综述中,我们提供了目前关于骨细胞生物能量途径的信息。我们讨论了表明缺氧驱动的葡萄糖代谢在调节骨细胞生物能量中的作用的已发表研究。我们还提供了关于骨细胞可以利用的各种底物的信息,以满足其能量需求,即丙酮酸、氨基酸和脂肪酸。这是基于一些文献中可用的初步实验证据。甲状旁腺激素 PTH 和甲状旁腺激素相关肽 PTHrP 在骨骼合成代谢和吸收中的作用,以及骨骼龛位细胞代谢途径的调节,需要进一步探索。线粒体代谢通过底物利用、骨细胞在骨皮质中的位置和线粒体生物发生在骨细胞生物能量中发挥作用。虽然在传统细胞系中研究代谢通量存在局限性,但现在有新的细胞系和复杂的工具可用于研究骨细胞生物能量,以帮助在未来在体内发挥其潜力。

相似文献

1
Energy Metabolism of Osteocytes.
Curr Osteoporos Rep. 2021 Aug;19(4):444-451. doi: 10.1007/s11914-021-00688-6. Epub 2021 Jun 12.
4
Regulatory Effect of Osteocytes on Extramedullary and Bone Marrow Adipose Tissue Development and Function.
Curr Osteoporos Rep. 2024 Jun;22(3):301-307. doi: 10.1007/s11914-024-00871-5. Epub 2024 Apr 16.
5
Autocrine and Paracrine Regulation of the Murine Skeleton by Osteocyte-Derived Parathyroid Hormone-Related Protein.
J Bone Miner Res. 2018 Jan;33(1):137-153. doi: 10.1002/jbmr.3291. Epub 2017 Oct 3.
7
The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases.
Front Endocrinol (Lausanne). 2020 Jul 8;11:405. doi: 10.3389/fendo.2020.00405. eCollection 2020.
9
Osteometabolism: Metabolic Alterations in Bone Pathologies.
Cells. 2022 Dec 6;11(23):3943. doi: 10.3390/cells11233943.
10
Osteocytes contribute nuclear receptor PPAR-alpha to maintenance of bone and systemic energy metabolism.
Front Endocrinol (Lausanne). 2023 Apr 18;14:1145467. doi: 10.3389/fendo.2023.1145467. eCollection 2023.

引用本文的文献

2
Mechanosensitive Piezo channels in mineralized tissues: emerging roles in osteodental adaptation and disease.
Front Cell Dev Biol. 2025 Jul 10;13:1607337. doi: 10.3389/fcell.2025.1607337. eCollection 2025.
4
Targeting mitochondria in bone and cartilage diseases: A narrative review.
Redox Biol. 2025 Jun;83:103667. doi: 10.1016/j.redox.2025.103667. Epub 2025 May 7.
5
Update on the correlation between mitochondrial function and osteonecrosis of the femoral head osteocytes.
Redox Rep. 2025 Dec;30(1):2491846. doi: 10.1080/13510002.2025.2491846. Epub 2025 Apr 18.
7
Comprehensive Metabolomic Profiling in Adults with X-Linked Hypophosphatemia: A Case-Control Study.
Biomedicines. 2024 Dec 26;13(1):22. doi: 10.3390/biomedicines13010022.
8
Salvia miltiorrhiza in osteoporosis: a review of its phytochemistry, traditional clinical uses and preclinical studies (2014-2024).
Front Pharmacol. 2024 Oct 3;15:1483431. doi: 10.3389/fphar.2024.1483431. eCollection 2024.
9
SIRT1 maintains bone homeostasis by regulating osteoblast glycolysis through GOT1.
Cell Mol Life Sci. 2024 May 3;81(1):204. doi: 10.1007/s00018-023-05043-9.

本文引用的文献

1
Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation.
J Cell Sci. 2021 Jan 11;134(1):jcs251645. doi: 10.1242/jcs.251645.
2
Dual Effects of Lipid Metabolism on Osteoblast Function.
Front Endocrinol (Lausanne). 2020 Sep 23;11:578194. doi: 10.3389/fendo.2020.578194. eCollection 2020.
3
Malic Enzyme Couples Mitochondria with Aerobic Glycolysis in Osteoblasts.
Cell Rep. 2020 Sep 8;32(10):108108. doi: 10.1016/j.celrep.2020.108108.
4
Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation.
FASEB J. 2020 Aug;34(8):11058-11067. doi: 10.1096/fj.202000771R. Epub 2020 Jul 6.
5
Glutamine Metabolism Controls Chondrocyte Identity and Function.
Dev Cell. 2020 Jun 8;53(5):530-544.e8. doi: 10.1016/j.devcel.2020.05.001. Epub 2020 May 28.
7
Hypoxic Regulation of Mitochondrial Metabolism and Mitophagy in Nucleus Pulposus Cells Is Dependent on HIF-1α-BNIP3 Axis.
J Bone Miner Res. 2020 Aug;35(8):1504-1524. doi: 10.1002/jbmr.4019. Epub 2020 May 15.
8
FOXO1 Mediates Advanced Glycation End Products Induced Mouse Osteocyte-Like MLO-Y4 Cell Apoptosis and Dysfunctions.
J Diabetes Res. 2019 Nov 25;2019:6757428. doi: 10.1155/2019/6757428. eCollection 2019.
10
Endoplasmic reticulum mediates mitochondrial transfer within the osteocyte dendritic network.
Sci Adv. 2019 Nov 20;5(11):eaaw7215. doi: 10.1126/sciadv.aaw7215. eCollection 2019 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验