文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于在 3T 连接体扫描仪上对离体人脑进行介观扩散加权 MRI 的 48 通道接收阵列线圈。

A 48-channel receive array coil for mesoscopic diffusion-weighted MRI of ex vivo human brain on the 3 T connectome scanner.

机构信息

Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany.

Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany.

出版信息

Neuroimage. 2021 Sep;238:118256. doi: 10.1016/j.neuroimage.2021.118256. Epub 2021 Jun 9.


DOI:10.1016/j.neuroimage.2021.118256
PMID:34118399
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8439104/
Abstract

In vivo diffusion-weighted magnetic resonance imaging is limited in signal-to-noise-ratio (SNR) and acquisition time, which constrains spatial resolution to the macroscale regime. Ex vivo imaging, which allows for arbitrarily long scan times, is critical for exploring human brain structure in the mesoscale regime without loss of SNR. Standard head array coils designed for patients are sub-optimal for imaging ex vivo whole brain specimens. The goal of this work was to design and construct a 48-channel ex vivo whole brain array coil for high-resolution and high b-value diffusion-weighted imaging on a 3T Connectome scanner. The coil was validated with bench measurements and characterized by imaging metrics on an agar brain phantom and an ex vivo human brain sample. The two-segment coil former was constructed for a close fit to a whole human brain, with small receive elements distributed over the entire brain. Imaging tests including SNR and G-factor maps were compared to a 64-channel head coil designed for in vivo use. There was a 2.9-fold increase in SNR in the peripheral cortex and a 1.3-fold gain in the center when compared to the 64-channel head coil. The 48-channel ex vivo whole brain coil also decreases noise amplification in highly parallel imaging, allowing acceleration factors of approximately one unit higher for a given noise amplification level. The acquired diffusion-weighted images in a whole ex vivo brain specimen demonstrate the applicability and advantage of the developed coil for high-resolution and high b-value diffusion-weighted ex vivo brain MRI studies.

摘要

体内弥散加权磁共振成像在信噪比 (SNR) 和采集时间方面受到限制,这限制了空间分辨率只能达到宏观尺度。离体成像允许任意长的扫描时间,对于在不损失 SNR 的情况下探索人类大脑的中尺度结构至关重要。为患者设计的标准头部阵列线圈对于离体整个大脑标本的成像不是最佳的。这项工作的目的是设计和构建一个 48 通道的离体全脑阵列线圈,用于在 3T Connectome 扫描仪上进行高分辨率和高 b 值弥散加权成像。通过在琼脂脑模型和离体人脑样本上进行成像指标来验证线圈,并对其进行了特征描述。两段式线圈成型器的设计目的是紧密贴合整个大脑,接收元件分布在整个大脑上。包括 SNR 和 G 因子图在内的成像测试与为体内使用而设计的 64 通道头部线圈进行了比较。与 64 通道头部线圈相比,外周皮层的 SNR 提高了 2.9 倍,中心区域的 SNR 提高了 1.3 倍。与 64 通道头部线圈相比,48 通道离体全脑线圈还降低了高度并行成像中的噪声放大,在给定的噪声放大水平下,允许大约提高一个单位的加速因子。在整个离体大脑标本中获得的弥散加权图像证明了所开发的线圈在高分辨率和高 b 值离体大脑 MRI 研究中的适用性和优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/4761d95317b8/nihms-1730649-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/87296fbfc3b8/nihms-1730649-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/e7e4be5037fa/nihms-1730649-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/69cd75a8f257/nihms-1730649-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/c211ca72aa6a/nihms-1730649-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/a0a25c24e261/nihms-1730649-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/f1afd0c94eb8/nihms-1730649-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/e6111bd0456a/nihms-1730649-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/35215edc6cd5/nihms-1730649-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/428bcf85fa09/nihms-1730649-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/4761d95317b8/nihms-1730649-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/87296fbfc3b8/nihms-1730649-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/e7e4be5037fa/nihms-1730649-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/69cd75a8f257/nihms-1730649-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/c211ca72aa6a/nihms-1730649-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/a0a25c24e261/nihms-1730649-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/f1afd0c94eb8/nihms-1730649-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/e6111bd0456a/nihms-1730649-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/35215edc6cd5/nihms-1730649-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/428bcf85fa09/nihms-1730649-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d2/8439104/4761d95317b8/nihms-1730649-f0010.jpg

相似文献

[1]
A 48-channel receive array coil for mesoscopic diffusion-weighted MRI of ex vivo human brain on the 3 T connectome scanner.

Neuroimage. 2021-9

[2]
Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome.

Neuroimage. 2021-11

[3]
A 16-channel loop array for in vivo macaque whole-brain imaging at 3 T.

Magn Reson Imaging. 2020-2-17

[4]
Effects of proximity and noise level of phased array coil elements on overall signal-to-noise in parallel MR spectroscopy.

Magn Reson Imaging. 2018-4

[5]
Enhancing the brain MRI at ultra-high field systems using a meta-array structure.

Med Phys. 2023-12

[6]
A dedicated eight-channel receive RF coil array for monkey brain MRI at 9.4 T.

NMR Biomed. 2020-10

[7]
Brain imaging with improved acceleration and SNR at 7 Tesla obtained with 64-channel receive array.

Magn Reson Med. 2019-2-25

[8]
Comparison of volume, four- and eight-channel head coils using standard and parallel imaging.

Eur Radiol. 2005-8

[9]
5T magnetic resonance imaging: radio frequency hardware and initial brain imaging.

Quant Imaging Med Surg. 2023-5-1

[10]
Diffusion-weighted MRI of the prostate at 3.0 T: comparison of endorectal coil (ERC) MRI and phased-array coil (PAC) MRI-The impact of SNR on ADC measurement.

Eur J Radiol. 2013-6-28

引用本文的文献

[1]
Ultra-high gradient connectomics and microstructure MRI scanner for imaging of human brain circuits across scales.

Nat Biomed Eng. 2025-7-16

[2]
Visualizing cortical laminar architecture in the living human brain using next-generation ultra-high-gradient diffusion MRI.

Res Sq. 2025-6-10

[3]
High-density MRI coil arrays with integrated field monitoring systems for human connectome mapping.

Magn Reson Med. 2025-11

[4]
Strong gradients, cool performance: A 64-channel array coil with concurrent field monitoring and thermal control for ex vivo diffusion-weighted brain imaging using the 3T connectome 2.0 MRI scanner.

Magn Reson Med. 2025-11

[5]
Mesoscale connectivity of the human hippocampus and fimbria revealed by ex vivo diffusion MRI.

Neuroimage. 2025-4-15

[6]
A deep brain stimulation-conditioned RF coil for 3T MRI.

Magn Reson Med. 2025-3

[7]
Eddy current-induced artifact correction in high b-value ex vivo human brain diffusion MRI with dynamic field monitoring.

Magn Reson Med. 2024-2

[8]
microRNA Biology on Brain Development and Neuroimaging Approach.

Brain Sci. 2022-10-9

[9]
High-fidelity, high-spatial-resolution diffusion magnetic resonance imaging of ex vivo whole human brain at ultra-high gradient strength with structured low-rank echo-planar imaging ghost correction.

NMR Biomed. 2023-2

[10]
A unified 3D map of microscopic architecture and MRI of the human brain.

Sci Adv. 2022-4-29

本文引用的文献

[1]
Increased sensitivity and signal-to-noise ratio in diffusion-weighted MRI using multi-echo acquisitions.

Neuroimage. 2020-11-1

[2]
Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain.

Neuroimage. 2020-7-1

[3]
7 Tesla MRI of the ex vivo human brain at 100 micron resolution.

Sci Data. 2019-10-30

[4]
High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain.

Brain Struct Funct. 2020-5

[5]
Ultra-high resolution and multi-shell diffusion MRI of intact ex vivo human brains using k-dSTEAM at 9.4T.

Neuroimage. 2019-8-10

[6]
A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology.

Neuroimage. 2018-8-17

[7]
Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances.

NMR Biomed. 2018-6-4

[8]
Mesoscale connectomics.

Curr Opin Neurobiol. 2018-3-24

[9]
Dissecting the pathobiology of altered MRI signal in amyotrophic lateral sclerosis: A post mortem whole brain sampling strategy for the integration of ultra-high-field MRI and quantitative neuropathology.

BMC Neurosci. 2018-3-13

[10]
Quantitative MRI Changes due to Progressive Formalin Fixation in Whole Human Brain Specimens: Longitudinal Characterization of Diffusion, Relaxometry, and Myelin Water Fraction Measurements at 3T.

Front Med (Lausanne). 2018-2-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索